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'ABSTRACT
Sala, O.E., Biondini, M.E. and Lauenroth, W.K., 1988. Bias in estimates of primary
production:  an analytical solution. Ecol. Modelling, 44: 43-55.

This paper addresses the issue of the effect of random error upon the estimates of above-
or belowground net primary production (NPP). We show that random errors in estimates of
biomass do not compensate but always result in a positive bias in estimates of NPP. Second,
we demonstrate that the larger the number of time intervals considered, the higher is the
positive bias or overestimation error. An effect similar to an increase in the number of
sampling periods is obtained by increasing the number of components utilized in estimating
NPP. These are usually taxonomic or functional (depth, live, recent dead, etc.) components.

We calculate the magnitude of the overestimation error as a function of the size of the
difference in two sequential estimates of biomass and the variability associated with them.
We propose a method that uses this error to correct the estimates of NpP for the positive bias
resulting from random errors and to develop confidence intervals for the corrected NpP. We
suggest that this method will remove the positive bias from estimates of NPP upon which
nutrient budgets, energy flow and trophic webs rely. The concepts presented will help in the
design of experiments that use production as a response variable.

INTRODUCTION

Ecologists are presently facing an important controversy about the effect
of random error on estimates of primary production (Singh et al., 1984;
Lauenroth et al. 1986; Vogt et al, 1986). This controversy is relevant
because at stake are: (1) the validity of past estimates of production upon
which nutrient budgets, energy flows, and trophic webs rely; and (2) the
design of future experiments that use production as a response variable.

Singh et al. (1984) demonstrated, using a simulation model, that the most
commonly used techniques overestimated net root production by as much as
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700%. Overestimation occurred even when they used only significant dif-
ferences in biomass to calculate production. This result contradicted previ-
ous assumptions that estimates of net root production based upon a time
series of biomass always underestimated the true production because bio-
mass peaks were missed and because of the simultaneous nature of biomass
input and output processes (production and decomposition). Vogt et al.
(1986) challenged the conclusions of Singh et al. (1984), suggesting that they
were not generally applicable.

The overestimation question outlined by Singh et al. (1984) is not re-
stricted to net root production but applies to any estimate of above- or
belowground production based upon a time series of biomass. The objectives
of this paper are: (1) to show that random error in estimates of biomass will
always result in a positive bias in estimates of above- or belowground net
primary production (NPP); (2) to demonstrate that the larger the number of
time intervals considered, the higher the positive bias or overestimation
error; (3) {o estimate the magnitude of the overestimation error and to use it
to correct the estimates of NpP; and (4) to develop confidence intervals for
the corrected estimates of NPP.

The techniques most commonly utilized to estimate aboveground or
belowground net primary production require a time series of biomass
estimates. Biomass is usually estimated by the harvest technique, in which
aboveground biomass is harvested from several plots or roots washed from
soil cores. Biomass is sometimes divided into functional or taxonomic
components (live, recent dead, old dead, depth, species, etc.). Aboveground
biomass is frequently estimated by one of the several available double-sam-
pling techniques (Wilm et al., 1944).

There are several ways of estimating NPP from a time series of biomass
(Singh et al., 1975). The simplest way equates NPP with standing crop at the
end of the growing season. The more complicated methods take into
consideration the different functional (Wiegert and Evans, 1964) and specific
components (Sala et al., 1981) of biomass. These methods attempted to
correct the errors leading to underestimation (ELU) of NPP. ELU arise because
of a difference between the concept of net primary production and the
method used to calculate it from data. Net primary production is defined as
the difference between the energy fixed by autotrophs and their respiration
(Odum, 1971). Most commonly, NPP is calculated from biomass data, and
production is equated with increments in biomass and ELU result from such
things as missing peaks in biomass and the simultaneous nature of incre-
ments and losses. Consider NPP = B, — B, where B, is biomass of time ¢,.
There is always the possibility that biomass reached a value higher than B,
during the time interval (¢, 7,) and therefore the estimated value of NPP is
smaller than the true value of NpPp. The difference B, — B, is a result of the
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balance of production and decomposition or production and senescence if
we are considering only green biomass. Decomposition can occur simulta-
neously with production and can mask production, making the estimated
NPP smaller than the true NPP. For a species the two processes may
dominate in different phases of its life cycle. For plant communities made
up of several species where life cycles are not in synchrony, this source of
error is important.

Singh et al. (1984) demonstrated that there are other kinds of errors, those
leading to overestimation (ELO) of NPP. Random errors in estimates of
biomass do not compensate but accumulate leading to positive bias in
estimates of NPP. Random errors do not compensate because of the defini-
tion of production. Production is estimated by the increment in biomass
during a period of time. A negative difference in biomass yields a produc-
tion value of zero. Consider the case in which the true increment in biomass
is zero. Because of the variability associated with the estimates of biomass at
time 1 (B;) and at time 2 (B,); when this system is sampled, B, will
sometimes appear smaller than B; and the estimated production for this
period will be zero. Sometimes the reverse will occur; B, will appear greater
than B;, and this positive difference will be accepted as production. When
random error results in a negative difference, it is ignored; and when it
results in a positive difference, it is accepted as production. Singh et al.
(1984) demonstrated that applying statistical constraints designed to accept
only ‘significant’ increases will reduce but not eliminate this problem. This
paper will address the occurrence and magnitude of ELO as well as the
different ways to correct NPP estimates.

RANDOM ERROR AND THE OVERESTIMATION OF NPP

Define B, and B,, the biomass at time 1 and time 2, as the random
variables associated with sampling error in two consecutive sampling peri-
ods. Furthermore, let’s assume that both have a normal distribution with
mean p,, standard deviation o,=1, 2 [B;,~ N(u,, 0;)]. Without loss of
generality, we also assume that B, > B,. The random variable representing
the difference between these two variables is also normally distributed:

D=(Bz_Bl)“'N[H=.“2"IL1,°=\/°12+°22_C0V(Bl’ Bz)]

NPP is not the difference between B, and B, (D) but it is only the positive
values of this difference. Production is estimated as the increment in
biomass, and ranges between 0 and infinity. Therefore, the random variable
NPP is defined as:

0 when (B, — B,;) <0
NPP =

(B, — B,) when (B, — B,) >0
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The distribution function of Npp [F,,.(NPP)] is not normal but a combina-
tion of a discrete random variable with mass at 0 and a continuous random
variable with a truncated normal distribution:

FNNP(NPP) = q +P GCNPP(NPP) (1)
where p= P[D >0]; g=1— p; and:
1 NPP 1 2

G npp (NPP) = e 279" qx 2

crn (NPP) = = f 2)

The mean of our estimate of production [E(NPP)] and its variance [Var(NPP)]
then are:

E(NPP) = ppp + —0—¢ ~ 0/’ (3)

V2@
Var(npp) = pp2(1 — p) + po? + e~ 1w’ (1 —2p) — "_ze—(/i/o)2 (4)
g 2n 2

See Korn and Korn (1968) for a proof.

In order to satisfy our first objective we show in Appendix A that the
expected value of NPP [E(NPP)] is greater than the true increment in biomass
between ¢, and 7,(p). The difference between E(NPP) and p, is then called
the overestimation error (OE):

OF = —— ¢~ 1w/ _ gy (5)
2m

where p = u, —p, is the true difference in biomass between #; and ¢,; o
= /o2 + 62 — Cov(B,, B,) is the standard deviation of the difference; and
q is the probability of B, — B, < 0. The overestimation error is a function of
the variability in the estimate of the difference in biomass between ¢; and ¢,
and the magnitude of the true difference. The larger the variability associ-
ated with the estimate of B, and B;, the higher will be the OE. The larger the
true increment in biomass (p) the smaller will be the OE.

We have chosen an example in which p is the same for two cases. The
standard deviation of the difference (p) in the first case is half of ¢ in the
second case (Table 1). The probability p of B, — B, > 0 was calculated as
the probability of a normal distribution with mean p and standard deviation
o. We estimated OE using equation (5). The increase in variability from case
1 to case 2 resulted in an increase in the probability of obtaining a value
smaller than 0. It, in turn, resulted in an increase in the mean of NPP E(NPP).
Therefore, the difference between the means of the normal and Npp distribu-
tions increased. This is the difference between the expected value of NPP and
the true increment in biomass, the overestimation error, which increased
from 11% to 46%.
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We can now look at a second example to demonstrate the effect of the
true difference upon the overestimation error. We compared case 2 of the
previous example with a case (3) which has the same o but a smaller true
difference (Table 1). The decrease in the magnitude of the true difference
resulted in an increase in the OE from 4.6 g/m? to 6.5 g/m?. The decrease in
the true difference determined an increase in the probability of obtaining a
value smaller than 0. It forces the mean of the Npp distribution away from
the mean of the normal distribution. This difference between the means of
both distributions is the overestimation error, which increased from case 2 to
case 3 from 46% to 130%.

NUMBER OF TIME INTERVALS AND THE OVERESTIMATION ERROR

The second objective of this paper is to demonstrate that the larger the
number of time intervals considered, the higher will be the overestimation
error. Let’s assume again that B, and B, are the random variables associ-
ated with the sampling errors of biomass estimates at time ¢, and 7,. We will
first look at a numerical example in which B’ (the random variable
associated with sampling errors at ¢’) has a mean (u’) which is half way
between u, and p,; second, we will prove that the same increase of OE
occurs regardless of the location of p’ as long as p; <p’ <p,. We calcu-
lated, using the data of case 2 (Table 1), the OE associated with the estimate
of NPp,, for two sampling dates (¢, t,), OE, , = 4.6 g/m*. The errors
associated with the sampling periods ¢, ¢ and ¢/, ¢, (OE, ,=6.5 g/m?%
OE, , = 8.9 g/m’) were larger than the t,, t, error because the difference in
biomass decreased. The error in the first sampling period was smaller than

TABLE 1

Examples that demonstrate the effect of the variability associated with the difference in
biomass between #; and ¢, and the magnitude of the true difference upon the overestimation
error

Case 1 Case 2 Case 3
Biomass at time 1, g/m? (B,) 110 110 110
Biomass at time 2, g/m? (B,) 120 120 115
B, — B, (p) 10 10 5
Standard deviation of B, (o,) 5 10 10
Standard deviation of B, (o,) 10 20 20
Standard deviation of B, — B, (o) 11 22 22
Standard normal deviate (z) -0.91 —0.45 —-0.23
Probability of B, — B; >0 (p) 0.82 0.68 0.59

Overestimation error, g/m? (OE) 1.1 4.6 6.5
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in the second because the variance was smaller in the former and the
difference in biomass was the same. The total overestimation error associ-
ated with the estimate of NPP;, using three sampling dates was 15.4 g/m?,
which was almost three times larger than the error for two sampling dates
4.6 g/m’.

We will now show the generality of the relationship between the number
of sampling dates and the overestimation error. The random variable associ-
ated with the sampling errors at t" is B’ ~ N(p/, ¢”) and lies within the p,,
K, range. NPPg, is the random variable associated with an estimate of net
primary production using three sampling dates (¢,, ¢’, 7,) and NPP,, is the
random variable associated with the estimate of net primary production
obtained using only two sampling dates (#,, ¢,). We proved in Appendix B
that:

E[NPP)| > E[NPP) | if cvy =cvy=cvy=>b

where p is the true NPP and Cv, are coefficients of variation associated with
biomass estimates at time ¢,.

Our results indicate that ELO will be increased by increasing the number
of sampling periods. An effect similar to an increase in the number of
sampling periods is obtained by increasing the number of components
utilized in estimating NPP. We can demonstrate using a similar analysis that
the positive bias, resulting from random error, in root production estimated
by layers is always greater than when estimated as differences in total
biomass as a consequence of the increase of ELO. The overestimation error
associated with estimating aboveground production as the sum of the
production by individual species is higher than when production is estimated
as differences in total biomass.

Ecologists have traditionally interpreted estimates of net primary produc-
tion in a manner that emphasized the errors leading to underestimation. This
has resulted in higher estimates being considered better than lower ones.
There are several good reasons why this has been true. The most important
of these, for our purposes, is that although the concept of net primary
production is simple, it cannot be measured directly. Consequently, it must
be estimated using components of the ecosystem which can be measured.
Which components should be measured? From a conceptual point of view
the answer is simple. Measure as many components as the budget will allow.
The more components included in the calculation, the closer the method of
calculation will be to the concept of net primary production. This is the rule
that has guided ecologists for the past 25 years of estimating primary
production.

Odum (1960) argued that the sum of the peak standing crops of individ-
ual species was greater than the peak standing crop of the community and
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therefore provided a better estimate of net primary production. Aber et al.
(1985) compared estimates of net root production using two methods and
concluded that the one which contained the larger number of components
was the best. Dickerman et al. (1986) compared seven techniques for
calculating net primary production for a wetland dominated by Typha
latifolia. They concluded that most techniques underestimated production
by failing to include such things as early shoot mortality, leaf turnover, and
losses of portions of individual leaves. In each case the authors are correct in
their statements that accounting for more processes results in conceptually
more correct estimates of net primary production and lower underestimation
errors. What is missing in each case is an appreciation of the effect of the
uncertainty associated with each component in the calculation of the ésti-
mate of net primary production. _

In general, the greater the uncertainty associated with the components,
the greater the uncertainty associated with the results (O’Neill, 1973). In the
case of production, increased uncertainty leads to increased overestlmatlon
The reason for this is that values less than zero are rejected. Smgh et al.
(1984) introduced the idea of errors leading to overestimation. Our analy51s
has provided an explanation for why random errors in estimates of biomass,
or any other component used in calculation of net production, always lead
to overestimates of the true difference between samples collected on two
dates. ‘ S

How does one choose the best way to estimate production? It is clear that
estimates with few components and few sample dates will have the lowest
overestimation error. It is equally clear that estimates with the largest
number of components and the most frequent sampling will have the lowest
underestimation error. The answer to the question of which estimate is best
depends upon the relationship between the objectives of the project and the
system studied. The objectives place boundaries on the total error that will
be acceptable and the system being studied determines the relationship
between the overestimation and underestimation errors. Within the window
of acceptable error one must evaluate the tradeoff between the importance
of the closeness of the calculation procedure to the concept of NpP, and the
size of the overestimation error. If it were possible to correct for part of all
of the overestimation error, we could break out of this tradeoff situation. We
will explore this possibility in the next section.

MAGNITUDE OF THE OVERESTIMATION ERROR AND THE CORRECTED NPP
Knowledge of the magnitude of the overestimate will not only aid in the

selection of the appropriate experimental design but also will be instrumen-
tal in correcting estimates of NPP. We have shown in equations (3) and (4)
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the relationship between the true value of NPP () and its variance (o?) and
the expected value of the estimated NpP [E(NPP)] and the sample variance. If
p, the proportion of cases in which B, — B; > 0, can be estimated, we will
have reduced our problem to a system of two equations with two unknowns,
‘which can be solved numerically. We estimate p using the estimated D
(D = B, — B,) and its standard deviation (sD). We first calculate the normal
deviate z:

and, second, using a table for the standard normal curve, we look for the
probability P (Z > z) that is the value of p, the probability of B, — B, > 0.

The corrected value of NPP (NPP) can be obtained using the estimate of p,
the sample mean and the sample variance for a pair of biomass estimates.
We include in Appendix C a simple algorithm to solve this system of two
equations with two unknowns. The algorithm can be easily implemented in a
hand-held programmable calculator. If more than two estimates of biomass
are used in estimating production, NPP = NPP; + ... + NPP,, where NPP, is
the corrected estimate of production between i and i + 1.

CONFIDENCE INTERVALS FOR NPP

The direct approach for estimating confidence intervals for NPP would
imply finding the distribution of NPp,. However, this is very difficult, since
NPP; is obtained from a nonlinear system of equations with no analytical
solution. Therefore, the best way to obtain confidence intervals is to use the
central limit theorem (Chow and Teicher, 1978). The distribution of NPP can
be approximated by the normal distribution, with:

n
NPP = ) NP,

i=1
n
6*=Y o?
i=1

so the confidence interval c1 (NPP) is
CI(NPP) = NBP + 1, ,(n — 1) * N™1/2

where

. n 1/2
S= [Z a,?-}
i=1

6?2 are the estimated sample variances, and a is the desired level of type 1

€rror.
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APPENDIX A
Proof that E(NPP) is greater than the true NPP (p) and calculation of the

overestimation factor. If D= (B, — B;) ~ N(u, o), where p and o are as
defined in Appendix A, then:

p= [0 gt gy f°° d e d-w/o? g4
—wV2mo 0 270
< f°° L e ia-w/o? gg
o V2mo
Then:
1 o0 1.2 o 1 2
<— +wo)e ™ dw=pp+ —=e 1 * = E(npP
ps o= /_W(M ) PRt 5= (~ep)

where w = (d — p)/0o and p is the probability of D > 0. The overestimation
factor (OE) is:

/0 1 d e~ 3d=-w/9? 44

wy2mo

OE =

=9 iwe? _
=—08¢
where ¢ is the probability of D < 0.

APPENDIX B

Let’s assume that B;, B, and B’ are as defined in the main text and have
a normal distribution with:

1 =E(B,)
1, =E(B,)
W =E(B’)=E(B,) +a[E(B,) — E(B,)]

where 0 <a <1. Let’s also assume that Cvg = CVg, = CVp = b, where cv
stands for coefficient of variation. We also assume that B;, B, and B’ are
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independent since they represent the random variables associated with the
errors in estimating biomasses at time 7, We want to emphasize that we are
not saying that the biomasses are independent (they are not random either!)
but that the errors associated in estimating the biomasses from a limited
number of sample are independent (something guaranteed by adequate
randomization). -

(a) We first prove that:

and
Var(B,— B') =02> (1 —a)’ Var(B, — B,) = (1 — a)*o>

Because of our assumption of equal coefficients of variation (cvg =b=cCvy;
i=1,2):

Var(B,) = b’ E(Bl)2 =b’u}
Var(B,) = b* E(B;)" = b}
Var(B’) = b*[E(B,) + a E(B, - B,)|’

=b2[I~L1 + a(l-‘z_ﬂl)]z

Then:
Var(B’ - B,) = of = b’u3 + b*[p, + a(p, — p,)]* (because of
independence)
= b(2p3 + 2apip, — 2apd + a%pd — 2a%u,p, + pla?)

=a’b?(u} +p3) + b2[2p3 + 2au1u2(1 —a) —2ap?]
Because we assume that p, > p,, then:
of > a’b*(pl+p3) + b2[2p%(1 - az)]
Now b*[2p3(1 — a”)] > 0 and o = b2(2 + p2). So 67 > a%?, which implies:
a 1

—_— < —
o, o

In a similar manner we can establish that ¢% > (1 — a)%?2, which implies:

(-4 1

o, o

(b) We now prove that ENPP(3)>ENPP(2), where ENPP;), i=2, 3, are
defined as in the main text.

In order to prove that E[NPP;;)] > E[NPR,)], it suffices to show that
OE 3 — OE(y > 0, where OE;: overestimation of true NPP, using i sampling

-
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dates. Define:

2

\I'(x_)=%e‘%x and p=B,— B

V2m
SO
B o= =ap
p—p =(1-a)u
Then:

—ap/o —(1—-a)u/o
OE@3) — Oy, =’f o o x ¥(x) dx‘ +’f draw “o,x ¥(x) dx
o —
~ap/o; ~(A-a)/o;
—a,u,f a ¥(x) dx——(l—a)p.f : ¥(x)dx

f_”/aox ¥(x)dx

+,Lf_‘”/°\p(x) dx

In part (a) we establish that under the condition of equality in the coefficient
of varition of biomass estimates at 7, ¢, and ¢’

i<l and __(l—a) <—1—

o, o© o, o

which implies that o, + 6, >0 and —a/0;> —1/0 and —(1—a)/o,>
—1/0. Therefore:

>If_aﬂ/o]olx ¥(x) dx

—(1-a)p/o,
+lf ( _)M/ o,x ¥(x)dx

—p/o —p/o
—ap/o, —(1-a)p/e,
—an """ (x) dx—(1=a)uf """ (x) dx
~p/o —p/o
—ap/o, —(A—-a)p/o,
>f /M/ aoﬂlo1 ¥(x) dx+f (/ w [(1-a)/0,]no, ¥(x)dx
—-p/c —u/o
—ap/o, —(1—a)p/o,
—apf . ¥(x) dx—(l—a)p,f v ¥(x)dx=0
—u/o —p/o

S0 OE;) — OE;, > 0, which implies that E[NPP;; ] > E[NPP, .
APPENDIX C

Algorithm for solving the system of equations (3 ) and (4)

Define:
o
A, = —L_e 3w/’
1
/ V2@

where i is the subscript for u and j the subscript foro.






