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Abstract Understanding and predicting ecosystem
functioning (e.g., carbon and water fluxes) and the role
of soils in carbon storage requires an accurate assess-
ment of plant rooting distributions. Here, in a compre-
hensive literature synthesis, we analyze rooting patterns
for terrestrial biomes and compare distributions for vari-
ous plant functional groups. We compiled a database of
250 root studies, subdividing suitable results into 11 bio-
mes, and fitted the depth coefficient B to the data for
each biome (Gale and Grigal 1987). § is a simple numer-
ical index of rooting distribution based on the asymptotic
equation Y = 1-Bd, where d = depth and Y = the propor-
tion of roots from the surface to depth 4. High values of
B correspond to a greater proportion of roots with depth.
Tundra, boreal forest, and temperate grasslands showed
the shallowest rooting profiles (B = 0.913, 0.943, and
0.943, respectively), with 80-90% of roots in the top
30 cm of soil; deserts and temperate coniferous forests
showed the deepest profiles (B = 0.975 and 0.976, re-
spectively) and had only 50% of their roots in the upper
30 c¢m. Standing root biomass varied by over an order of
magnitude across biomes, from approximately 0.2 to
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5 kg m2. Tropical evergreen forests had the highest root
biomass (5 kg m2), but other forest biomes and sclero-
phyllous shrublands were of similar magnitude. Root
biomass for croplands, deserts, tundra and grasslands
was below 1.5 kg m2 Root/shoot (R/S) ratios were
highest for tundra, grasslands, and cold deserts (ranging
from 4 to 7); forest ecosystems and croplands had the
lowest R/S ratios (approximately 0.1 to 0.5). Comparing
data across biomes for plant functional groups, grasses
had 44% of their roots in the top 10 cm of soil
(B = 0.952), while shrubs had only 21% in the same
depth increment (3 = 0.978). The rooting distribution of
all temperate and tropical trees was = 0.970 with 26%
of roots in the top 10 cm and 60% in the top 30 cm.
Overall, the globally averaged root distribution for all
ecosystems was B = 0.966 (#2 = 0.89) with approximate-
ly 30%, 50%, and 75% of roots in the top 10 cm, 20 cm,
and 40 cm, respectively. We discuss the merits and possi-
ble shortcomings of our analysis in the context of root
biomass and root functioning.

Key words Terrestrial biomes - Cumulative root
fraction - Root biomass - Rooting density - Soil depth

Introduction

The formal study of root distributions is over 250 years
old, with its origins in studies of crop species (Hales
1727). Historical improvements in techniques of root ex-
cavation and in situ root studies included using a hose to
wash out crop roots in a profile wall (Schubart 1857),
observing roots growing against a glass panel (Sachs
1873), and the formalization of root excavations (Weaver
1926). Beginning in the 1950s, tracer techniques provid-
ed a powerful tool for assessing functional rooting zones,
including radioisotopes, stable isotopes, and stable trac-
ers (e.g., Hall et al. 1953; Dansgaard 1964). More recent-
ly, dramatic improvements in video recording and image
processing have led to the widespread use of minirhizot-
rons for in situ studies of root growth and demography
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(e.g., Taylor 1987). These improvements notwithstand-
ing, the most commonly used technique for biomass as-
sessment remains the coring or excavation of soil and
subsequent separation of roots. Bohm (1979) provides an
excellent historical overview of methods for root studies.

In spite of this long history of study, our understand-
ing of root distributions, and belowground processes in
general, remains inadequate. Gaps in our knowledge in-
clude root attributes (e.g., distribution, production, de-
mography), the scaling of soil processes, and the diver-
sity of soil organisms and their role in ecosystem pro-
cesses (e.g., Burke et al. 1991; Jackson and Caldwell
1993; Hawksworth and Ritchie 1993; Pregitzer et al.
1993; Freckman 1995). Together with litterfall, root pro-
duction provides the primary input of organic carbon to
soils (Raich and Nadelhoffer 1989) and is of obvious
importance, since belowground carbon storage is more
than twice aboveground storage (Schlesinger 1991). In
many non-forest ecosystems, the proportion of plant
biomass found in the soil is greater than 80% of total
plant biomass (Caldwell and Richards 1986). Even
when forests are included, belowground primary pro-
duction is often 60-80% of total net primary production
(Reichle et al. 1973; Coleman 1976; Agren et al. 1980).
Fine roots frequently contribute the majority of below-
ground production and their life expectancy ranges from
weeks to years, depending on the species and environ-
mental conditions (Shaver and Billings 1975; Vogt and
Bloomfield 1991; Hendrick and Pregitzer 1993). Coarse,
woody roots can be much longer-lived, in some cases
effectively as old as the plant itself (Vogt and Bloom-
field 1991).

In this review we (1) synthesize data on root distribu-
tions, densities, and biomass for major terrestrial biomes,
(2) compare root data across biomes for various plant
functional groups (grasses, shrubs, and trees), and (3)
compute a globally averaged rooting distribution for all
biomes. The compiled distributions are based on a com-
prehensive literature synthesis. Examples of processes
where root distributions are important include water
fluxes to the atmosphere and groundwater, soil litter de-
composition, carbon sequestration, and nutrient cycling.
We highlight a number of directions for future research,
including incorporating more realistic root distributions
into global models for predicting the consequences of
global environmental change.

Methods
The database

We first compiled a database of approximately 250 references that
were useful for the project (listed and numbered in Appendix 1).
These references were found in journals, book chapters, reports,
and unpublished manuscripts and include data from all continents
except Antarctica. The oldest references date from early this cen-
tury and several recent publications provided numerous references
(e.g., Richards 1986; Rundel and Nobel 1991; Stone and Kalisz
1991). A reference was included in the analysis of root depth dis-

tributions if root samples were taken to at least 50 cm in at least
three soil increments. Approximately 80 references met these cri-
teria (Appendix 2), and many included multiple sites per study.
Additional studies in the database were used for biomass estimates
and root/shoot ratios (see below). In some cases a given study sup-
plied data for several species at a given location and these data
were combined into one ecosystem estimate. For each study we
also noted the location, latitude and longitude, annual precipita-
tion, soil type or texture, type of roots measured (e.g., fine or total,
live or dead), sampling method, and depth of sampling (see Ap-
pendix 2). Where possible, the data were analyzed as cumulative
root biomass (kg m-2, soil surface-area basis), root density (kg
m-3), and cumulative root fraction (the proportion of roots from
the soil surface to a given depth in the soil). Where root biomass
data were not available (e.g., data presented as root length or num-
ber of intersections), a study was included only in the analysis of
cumulative root distributions. The data from each reference were
separated into 11 biomes: boreal forest, crops, deserts, sclerophyll-
ous shrubland/forest, temperate coniferous forest, temperate de-
ciduous forest, temperate grassland, tropical deciduous forest,
tropical evergreen forest, tropical grassland/savanna, and tundra.
We have attempted a complete review of the literature for root dis-
tributions based on the above criteria, with the exception of crop
systems where we merely provide some comparative examples
(O’Toole and Bland 1987). In addition to root distributions with
depth, we also calculated the average root biomass and root/shoot
ratios (R/S) for each biome, based on values in our database and in
reviews by Caldwell and Richards (1986); Hilbert and Canadell
(1996); Kummerow (1981); O’Toole and Bland (1987); Risser et
al. (1981); Rodin and Bazilevich (1967); Rundel and Nobel
(1991); Santantonio et al. (1977); Viereck et al. (1986); Vogt et al.
(1996). Since R/S ratios sometimes change for systems over time
(e.g., decreasing with canopy closure in forests), we emphasized
data for mature vegetation.

The model

Gale and Grigal (1987) presented a model of vertical root distribu-
tion based on the following asymptotic equation:

y=1-pd

where Y is the cumulative root fraction (a proportion between 0
and 1) from the soil surface to depth d (cm), and P is the fitted
“extinction coefficient”. B is the only parameter estimated in the
model and provides a simple numerical index of rooting distribu-
tion. High [ values (e.g., 0.98) correspond to a greater proportion
of roots at depth and low [ values (e.g., 0.92) imply a greater pro-
portion of roots near the soil surface (Fig. 1). p values were fitted
to the data for each biome for those studies that sampled to a mini-
mum soil depth of 1 m. Approximately 50 studies met these crite-
ria, though coverage for some biomes was relatively weak (e.g.,
boreal forest with three such studies, temperate coniferous forest
with four, and tropical deciduous forest with only one).

In addition to biome analyses, we examined the data by plant
functional groups using only studies where roots were sampled to
depths of 1 m or more. In comparing grass and shrub life forms,
we examined data from temperate grasslands, tropical grasslands
and deserts (i.e., systems in which the two growth forms co-oc-
cur). Many studies in those biomes compared root biomass near
shrubs with similar data near grasses, while in other studies nearby
shrub and grass sites were compared. To assess trees as a function-
al group, we combined data for all temperate and tropical forests.
We also calculated a globally averaged rooting distribution by
pooling all data from systems sampled to at least 1 m depth in the
soil.

To create a global map of root distributions, we calculated the
percentage of root biomass found in the upper 30 cm of soil for
each biome, based on their respective B values. These data were
then plotted on a 1°x 1° grid scale for the land-cover classifica-
tions of Wilson and Henderson-Sellers (1985). Those classifica-
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Fig. 1 Cumulative root distribution (cumulative proportion) as a
function of soil depth for eleven terrestrial biomes and for the the-
oretical model of Gale and Grigal (1987). The curve in each biome
panel is the least squares fit of B for all studies with data to at least
I m depth in the soil. The specific B values and the associated r2

Table 1 Values of B (and associated r? values) for our data and
the model of Gale and Grigal (1987), the percentage of roots in the
upper 30 cm of soil, average standing root biomass (kg - m~2), and
root:shoot ratios for each biome. The B values are represented
graphically in the panels of Fig. 1. See Methods and Fig. 1 for a
description of Gale and Grigal’s model; larger values of 8 imply
deeper rooting profiles. The values for root biomass and root:shoot
ratios summarize data from our database and the following re-

1 0 026 05 075 1 0 025 05 075 1
values can be found in Table 1 and the key to the symbols in each
panel is in Table 2. Gale and Grigal’s equation is of the form
y=1-Bd, where Y is the cumulative root fraction with depth (a pro-
portion between 0 and 1), d is soil depth (in cm), and B is the fitted
parameter. Larger values of f3 imply deeper rooting profiles

views: Caldwell and Richards (1986), Hilbert and Canadell
(1996), Kummerow (1981), O’Toole and Bland (1987), Risser et
al. (1981), Rodin and Bazilevich (1967), Rundel and Nobel
(1991), Santantonio et al. (1977), Viereck et al. (1986), and Vogt
et al. (1996) (listed in Appendix 1). The dual values for desert root
biomass and root/shoot ratios are for cold and warm deserts, re-
spectively

Biome B r % Root biomass Root biomass Root/shoot
in upper 30 cm (kg - m?) ratio
Boreal forest 0.943 0.89 83 29 0.32
Crops 0.961 0.82 70 0.15 0.10
Desert 0.975 0.95 53 1.2,0.4 45,07
Sclerophyllous shrubs 0.964 0.89 67 4.8 1.2
Temperate coniferous forest 0.976 0.93 52 4.4 0.18
Temperate deciduous forest 0.966 0.97 65 4.2 0.23
Temperate grassland 0.943 0.88 83 1.4 3.7
Tropical deciduous forest 0.961 0.99 70 4.1 0.34
Tropical evergreen forest 0.962 0.89 69 4.9 0.19
Tropical grassland savanna 0.972 0.95 57 1.4 0.7
Tundra 0914 0.91 93 1.2 6.6
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Fig. 3 Cumulative root biomass (kg m=2) for 11 terrestrial biomes.
The key to the symbols in each panel can be found in Table 2. Ac-
tual values for the two points shown at the upper right corner of
tropical evergreen forest are 11.2 and 13.2 kg m~2 from Klinge and

Herrera (1978)
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Fig. 4 Root density (kg m=3) for eleven terrestrial biomes. The
key to the symbols in each panel is in Table 2

tions include tropical broadleaf forest, temperate deciduous forest,
mixed coniferous/deciduous forest, boreal coniferous forest, nee-
dle-leaf’ deciduous forest, savanna, temperate grassland, shrubs
without ground cover, tundra, desert, and agricultural systems. The
data for sclerophyllous shrublands were used for the classification
of shrubs without ground cover.

Results

Tundra, boreal forest, and temperate grasslands showed
the shallowest rooting profiles (B = 0.913, 0.943, and
0.943, respectively), with 93% of roots occurring in the
top 30 cm of soil for tundra and 83% for temperate
grasslands and boreal forests (Fig. I, Table 1). Deserts
and temperate coniferous forests showed the deepest
rooting profiles (B = 0.975 and 0.976, respectively) with
only 50% of the roots in the uppermost 30 cm. To further
contrast shallow- and deep-rooted systems, tundra typi-
cally had 60% of roots in the upper 10 cm of soil while
deserts had only 20% of their roots in the same depth in-
crement. Temperate grasslands had a shallower rooting
profile than did tropical grasslands/savannas (f = 0.943

and 0.972, respectively), though this result was due in
large part to the occurrence of woody roots in most tropi-
cal grassland/savanna studies. A global map of root dis-
tributions by depth (Fig. 2) reveals (1) a predominance of
shallowly rooted systems at high latitudes associated
with permafrost or waterlogging, (2) shallowly rooted
grassland regions, and (3) more deeply rooted woody
biomes, particularly deserts, temperate coniferous for-
ests, and tropical savannas.

Average root biomass varied by over an order of mag-
nitude across biomes, to a maximum of 5 kg m-2 for for-
ests and sclerophyllous shrublands (Table 1, Fig. 3).
Ecosystems with the lowest root biomass were crop-
lands, deserts, tundra, and grasslands, all of which had
root biomass < 1.5 kg m-2. Deserts and croplands were
lowest of all, though cold deserts had three times the root
biomass of warm deserts. Root biomass in forest ecosys-
tems ranged from approximately 2 to 5 kg m~2 (Table 1,
Fig. 3). Individual studies finding the greatest root bio-
mass included those in Venezuelan caatinga rainforest
(Klinge and Herrera 1978) and the California chaparral
(Kummerow et al. 1977; Kummerow and Mangan 1981).
Root/shoot ratios for each ecosystem varied from ap-
proximately 0.1 to 7 (Table 1). The ecosystem with the
smallest R/S ratio was managed croplands (R/S = 0.1).
For more natural systems, forest ecosystems had the
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Fig. 5 The distribution of grass, tree, and shrub roots as a func-
tion of soil depth across all relevant biomes. The data for trees in-
clude temperate deciduous, temperate coniferous, tropical decidu-
ous, tropical evergreen, and tropical savanna trees sampled to at
least 1 m depth. The data for grasses and shrubs are from deserts,
temperate grasslands, and tropical grasslands sampled to at least
1 m depth where the two life-forms potentially co-occur. The ex-
tinction curves derived from these data are § = 0.952 (2 = 0.88)
for grasses, § = 0.970 (2 = 0.91) for trees, and f = 0.978
(r2 = 0.92) for shrubs (curve fit by least squares minimization; see
text for discussion of the model). The key to the grass symbols is
as follows (see Appendix 1 for numbered references): B Elymus
alinus (23), @ Agropyron spicatum (54), A& Belgium grassland
(56), ® Bouteloua gracilis (140), [ Guinea grassland (138),
O Ghana grassland (175),  Tallgrass prairie (176), < Argentina
grassland (203), ¥ Festuca pallescens (203), % fine-leaved savan-
na (201), V broad-leaved savanna (201), ¥ Andropogon furcatus
(243), » Andropogon scoparious (243), 4 Bouteloua curtipendula
(243), + Bouteloua gracilis (243), x Agropyron smithii (243),
# Panicum virgatum (244), /\ Poa pratensis (244), v/ Buchloe
dactyloides (244). Shrub data: B Chrysothamnus nauseosus (23),
@ Artemisia tridentata (23), A Sarcobatus vermiculatus (23),
& Atriplex confertifolia (23), U Artemisia tridentata (54), O Sene-
cio filaginoides (63), /N Mulinum spinosum (63), < Larrea triden-
tata (71), ¥ Prosopis glandulosa (71), % Burkea africana (125),
¥ Guinea shrubs (138), ¥ Ghana shrubs (175), » Mulinum spino-
sum (203), 4 Adesmia campestris (203). Tree data: @ (189), A
(230), ® (250) 45 years, [J (250) 80 years, O (60), A (126) Vir-
ginia, < (126) Cove, *¥ (126) oak-hickory, % (203) Nothofagus pu-
mila, \/ (203) Nothofagus antarctica, ¥ (6), P (82) Kade,
« (32) Yangambi, + (105) Banco, <> (105) Thalweg, # (105)
Yapo, v (123), x (170), * (231), % (94), T (125), { (240)
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smallest R/S ratios, reflecting their large aboveground
woody biomass. The highest R/S ratios were observed
for tundra, grasslands, and the cold-desert component of
deserts (R/S ranging from approximately 4 to 6). Aver-
age root densities for each biome followed similar rela-
tive patterns as root biomass (Fig. 4). Sclerophyllous
shrublands and tropical evergreen forests had the highest
root densities, in some cases densities over 40 kg m—3 in
the shallowest depths. Deserts and croplands had the
lowest densities, with values never more than 5 kg m3
even in the most densely rooted cases.

To obtain a globally averaged rooting distribution, we
combined all studies in which roots were sampled to at
least 1 m depth (which included data from every biome
except tundra). The global average for all ecosystems
was P = 0.966 (r2 = 0.89; data not shown). Consequent-
ly, in the average global root profile approximately 30%
of roots were in the top 10 cm, 50% in the top 20 cm,
and 75% in the top 40 cm. In addition, we also com-
pared rooting patterns for various plant functional
groups across biomes, including grasses, shrubs, and
trees. While grasses had 44% of their root biomass on
average in the top 10 cm of soil, shrubs had only 21% of
their roots in the same depth increment (Fig. 5). Grasses
had 75% of their root biomass in the top 30 cm, com-
pared to 47% for shrubs. The respective extinction coef-
ficients were B = 0.952 (r2 = 0.88) for grasses and
B = 0.978 (¥ = 0.92) for shrubs (Fig. 5). The average
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Table 2 Key to the symbols for Figs. 1, 3, and 4. Each number in the table identifies a reference in Appendix 1. Each column contains

all of the references for a given biome in alphabetical order

Symbol Boreal Crops Desert Sclerophyll- Temperate Temperate Temperate Tropical Tropical  Tropical Tundra

forest ous shrubs  coniferous deciduous grassland deciduous evergreen grassland/
forest forest forest forest savanna

n 184 3 9 33 2 60 23 6 15 65 50

o 186 76 23 39 2 60 45 37 81 65 50

A 216 102 54 98 2 89 56 137 81 65 50

* 216 206 62 128 2 118 140 137 82 125 50

] 218 222 71 131 77 126 141 137 82 125 50

O 249 71 133 89 126 141 105 136 52

VAN 166 142 151 126 141 105 138 99

& 172 149 189 203 152 105 138 106

B 220 150 228 203 176 123 175 106

* 160 230 204 203 123 175 121

Vv 212 250 252 207 124 178 121

v 250 207 155 178

+ 207 231 201

X 207 170 201

# 207

@ 209

v 244

rooting distribution for all temperate and tropical trees
was B = 0.970 (r2 = 0.91), with 26% of roots in the top
10 cm, 60% in the top 30 cm, and 78% in the top 50 cm
(Fig. 5). Boreal forest trees were considerably more
shallowly rooted (B = 0.943, see above). Combining da-
ta from 25 studies of all woody plants (trees and
shrubs), the average rooting distribution was = 0.975
(r2 = 0.90), with 40% of roots in the top 20 c¢cm (data not
shown).

Discussion

One goal of our root analysis was to provide a database
for use in assessing soil C distributions and in examining
the effect of roots on C, H,O, and nutrient fluxes be-
tween soil, plants, and the atmosphere. One of the only
approaches for addressing such questions at regional and
global scales, and for predicting the consequences of
global change, is modeling. Currently, the most explicit
root descriptions in well accepted biome or global mod-
els are simple two- or three-layer representations that
separate shallow and deep water at arbitrary depth (e.g.,
Potter et al. 1993; Neilson 1995). For example, MAPSS
(Neilson 1995) is an ecosystem-biogeographic model
that links vegetation with water balance processes. It has
three soil layers (L1 from 0-50 cm, L2 from 50-150 ¢m,
and L3 below 150 cm), with grasses extracting water on-
ly from L1, shrubs from L1 and L2, and L3 containing
no roots (but consisting of a pool of H,O for gravity-
driven drainage to streams). CASA (Potter et al. 1993} is
a process model of terrestrial ecosystem production that
uses two sets of rooting depths. For water uptake the soil
rooting depth is 1.0 m for grasslands, tundra, and crop-
lands and 2.0 m for forests; the scalar used to estimate C
turnover and N mineralization includes a depth of only
0.3 m (Potter et al. 1993). Other models, including TEM
(Raich et al. 1991; Melillo et al. 1993), BIOME?2 (Pren-

tice et al. 1992) and BIOME-BGC (e.g., Running and
Hunt 1993), either do not specifically include soil depth
and root distributions, or use only a single biome-specif-
ic soil depth parameter. CENTURY (Parton et al. 1988,
1992), an ecosystem model used to simulate patterns of
plant primary production, soil organic matter dynamics,
and nutrient cycling, is a notable exception with five soil
depths: 0-15 cm, 15-30 cm, 3045 cm, 45-60 cm, and
60-90 cm.

Mechanistic models that examine the feedbacks be-
tween vegetation and climate (including atmospheric
CO,) are critical for predicting the consequences of
global change and for understanding the cycling of C,
H,0, and nutrients (e.g., Vitousek and Matson 1984;
Waullschleger et al. 1994; Paruelo and Sala 1995; Field et
al. 1995). Given these models as examples, how might
information on root distributions improve predictions of
ecosystem response to global change? One promising
approach would be to incorporate the observed root dis-
tributions into biome or global models. One or more of
the models might then be linked to a GCM (general cir-
culation or global change model) to quantify feedbacks
between vegetation and climate. Such feedbacks are nec-
essary for dynamic models that allow biomes to fluctuate
geographically, both affected by and affecting the earth’s
climate. More specific questions based on plant function-
al groups or a subset of biomes might also be addressed
by combining our root data with models. For example, if
the world’s grasslands were converted to shrublands,
how would H,O fluxes and C sequestration be altered?
How might the conversion of tropical forests to pasture
affect C distributions in the soil, and what would be the
consequences for recirculation of H,O? The observed
root distributions provide information to help answer
many such questions.

By far the majority of ecosystem root biomass re-
sides in the upper 1 m of soil (Fig. 3; Table 1). Despite
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this predominance of biomass in the upper soil layers,
our knowledge of the importance of the deep soil to nu-
trient and water balances could be much improved, par-
ticularly considering how few studies have quantitative-
ly sampled roots below 2 m. We found only nine studies
that measured root distributions to at least 2 m depth in
the soil. Those studies included one each in cold and
warm deserts (Dobrowolski et al. 1990; Freckman and
Virginia 1989), one chaparral dataset (the mountain
fynbos of Higgins et al. 1987), three forest studies (the
pine plantation of Van Rees and Comerford 1986; Ko-
chenderfer 1973 in temperate hardwood forest; and Ne-
pstad et al. 1994 for the Amazon), two savanna studies
(Prosopis glandulosa data in Heitschmidt et al. 1988;
Watts 1993) and data for five sites in Patagonia, Argen-
tina (a transect from Nothofagus forest through grass-
land to desert, Schulze et al. 1996). From a practical
perspective it is interesting to ask how much informa-
tion was gained in these studies by sampling below 1 m
depth. In five of the nine studies, 93%—100% of the
roots observed in the profile occurred in the uppermost
1 m. Two minor exceptions were Heitschmidt et al.
(1988), who found 90% of roots at 133 cm, and Watts
(1993), who found 92% of root biomass at 120 cm. The
two notable exceptions were Freckman and Virginia
(1989) and Nepstad et al. (1994). The Jornada desert da-
ta in Freckman and Virginia (1989) included two com-
munity types, one dominated by the phreatophyte Pro-
sopis glandulosa and one dominated by Larrea tridenta-
ta. P. glandulosa, one of the most deeply rooted species
in the world (Canadell et al. 1996), had 30% of its roots
below 1 m, while L. tridentata, with a shallower rooting
profile, had only 11% below 1 m. Nepstad et al. (1994)
measured fine-root biomass (< 1 mm) to a depth of ap-
proximately 6.5 m in eastern Amazonia, Brazil. Their
data show small but consistent fine-root biomass be-
tween | m and 6.5 m, enough to contribute substantially
to total fine-root biomass; 50% of fine roots in that
system occurred in the upper 70 cm of soil, but nearly
one-third were below 2 m. Based on Table 1 and the da-
ta in Nepstad et al. (1994), we estimate fine root bio-
mass in that system to be approximately 10% of total
root biomass (assuming 5 kg m2 for the latter). Deep
roots are likely to be important for C and H,O dynamics
in a number of ecosystems that experience periodic
drought. An examination of deep-rooted species, includ-
ing Acacia, Prosopis, and Eucalyptus spp., shows that
they are most often found in water-limited systems (see
recent reviews by Stone and Kalisz 1991; Canadell et al.
1996).

The root distributions presented here (Fig. 1) are
based primarily on root biomass in the upper 1-2 m of
soil (Appendix 2). What additional factors may be im-
portant for belowground resource capture and ecosystem
attributes? In addition to biomass, root surface area is
important for resource uptake, with important contribu-
tions from the relative activity of roots (Newman 1974,
Fitter 1982; Jackson et al. 1990) and root symbioses
(e.g., Vincent 1974; Allen 1991). Although the uptake

of nutrients may be limited primarily to upper soil lay-
ers, a relatively small proportion of roots deep in the
soil can be quite important for water uptake. To assess
functional rooting zones, tracer techniques and other ap-
proaches are an important supplement to direct excava-
tion. Relevant tracers include radioisotopes, stable iso-
topes, and stable tracers (e.g., Fox and Lipps 1964;
McKane et al. 1990). Both short term and seasonal fluc-
tuations in deep soil water can indicate root activity
(Holmes and Colville 1970). Seasonality of CO, con-
centrations in soil air with depth can also indicate activi-
ty of roots. Richter and Markewitz (1995) show substan-
tial soil acidity (pH < 4.2) to at least 6 m depth in the
soil, considerably more acidity than for the underlying
parent material (pH 7.9).

The data for certain systems were quite variable.
Sclerophyllous shrublands include such diverse systems
as the shallowly rooted mountain fynbos of South Afri-
ca, dominated by Protea spp. (Higgins et al. 1987), to
the potentially deep-rooted chaparral of southern Cali-
fornia (Kummerow and Mangan 1981, though we were
unable to identify any southern California study that
quantitatively sampled roots to > 1 m depth). R/S ratios
in sclerophyllous shrublands ranged from approximately
0.3 to 5, while R/S ratios in forest systems were much
more consistent. In general, variation in root distribu-
tions requires more detailed spatial and temporal inte-
gration in some systems if accurate root assessments are
to be made. Deserts are comprised of shallow-rooted
ephemerals, shallow-rooted perennials, and deep-rooted
perennials (Rundel and Nobel 1991). Where desert root
distributions have been examined, studies have typically
focused on individual species. Shallow-rooted ephemer-
als typically avoid drought, with root depths less than
20 cm (Evenari et al. 1971; Golluscio and Sala 1993).
Shallow-rooted perennials include cacti, which rarely
grow roots below 50 cm (Cannon 1911; Nobel 1989). In
contrast, roots of phreatophytes such as Prosopis
glandulosa or Zizyphus lotus can reach depths of 50 m
or more in the soil (Phillips 1963; Zohary 1961; Cana-
dell et al. 1996). Accurately assessing desert rooting
patterns requires spatial integration (either by examining
a number of species or by random sampling) and tempo-
ral integration (to capture the changing phenologies of
root abundance). Forest studies face similar difficulties,
and should address sampling distance from the tree and
tree density. A few examples of attempts to integrate
such spatial or temporal dynamics in woody systems are
Reich et al. (1980), Farrish (1991), and Le Roux et al.
(1995).

Relative root distributions among and within biomes
differ in part because of physical barriers to growth. For
example, permafrost restricts rooting depth in tundra and
in some boreal forests (e.g., Bonan 1992), though less
commonly in the boreal forests of North America (Solo-
mon 1992). In addition, waterlogging can also inhibit
root growth (Kane et al. 1992). These and other factors
make tundra ecosystems the most shallowly rooted of all
biomes examined, and lead to a shallower rooting profile



for boreal forests than for other forest types (Fig. 1, Ta-
ble 1). Poor soil aeration from waterlogging can decrease
rooting depth in all ecosystems (Klinge and Herrera
1978; Drew 1990; Rundel and Nobel 1991). Strong me-
chanical resistance to root penetration can be found in
arid and semi-arid ecosystems with a substantial caliche
layer (Gile et al. 1966), or in tropical savannas and tropi-
cal forests with a prevalent ironpan (Richards 1986). Not
surprisingly, shallow bedrock also inhibits root growth,
but channels and cracks can sometimes increase func-
tional rooting depth. Though all of these factors can limit
rooting depth, high temperatures can result in decreased
root abundance near the soil surface. In unshaded desert
soils the surface temperature can reach 70°C (Buxton
1925), reducing or eliminating roots in the upper soil
layer (e.g., Nobel 1988).

The ideal root study provides data to compare not just
total root biomass, but fine roots alone, coarse roots, the
distribution of root length and surface area with depth,
the proportion of live and dead roots, and root distribu-
tions for ecosystems and individual species. Not surpris-
ingly, few studies include all of this information. Al-
though it is unrealistic to expect every study to do so,
there are simple improvements that could be made to in-
crease the benefit of many future studies. One such im-
provement would be to document the sampling methods
more clearly. Spelling out the core diameter or area over
which sampling occurred, and accompanying depth in-
crements, enables data to be converted easily between a
soil-density and soil surface-area basis (e.g., kg m=3 or
kg m=2), This conversion is important when, for example,
the same data are used to compare total ecosystem bio-
mass (where a soil surface-area basis is appropriate) and
soil organic matter concentrations (where density is ap-
propriate). Studies should be specific about whether root
mass included dead roots, a subset of root size classes, or
total root biomass. One chronic problem is the underesti-
mation of fine root biomass. Grier et al. (1981) estimated
that two-thirds of net primary production in a 180-year-
old stand of Abies amabilis went to fine root production,
but such roots are often overlooked in biomass estimates
for woody vegetation. In some forests, the majority of
fine roots are < 1.0 mm in diameter and may be difficult
to recover from the soil (Hendrick and Pregitzer 1993).
Certain techniques, such as separating roots from soil
with pressurized water, almost certainly underestimate
fine roots.

This review provides a current synthesis of the liter-
ature, to be improved with the addition of new studies
and the inclusion of older studies that were unintention-
ally omitted. There are a number of important questions
on the controls of plant rooting distributions that we
hope to use the database to address, with an emphasis
on global environmental change. Global change may
induce strong feedbacks between plant rooting distribu-
tions and climate. The relatively large global warming
predicted for polar regions could have a profound effect
on permafrost depth and, consequently, tundra rooting
patterns and net C efflux (Chapin et al. 1992; Oechel et
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al. 1994). Deforestation in the Amazon and other re-
gions could alter recirculation of water between terres-
trial ecosystems and the atmosphere, regional hydrolo-
gy in general, and C storage (e.g., Dickinson and Hen-
derson-Sellers 1988; Lean and Warrilow 1989; Nepstad
et al. 1994), though net C loss can be mitigated to some
extent by intercropping and by selecting relatively
deep-rooted pasture species (Fisher et al. 1994). In-
creased atmospheric CO, and land-use change may al-
ter the proportion of shrubs and grasses across the
globe (e.g., Archer 1995; Polley et al. 1996), changing
C distributions in the soil and the recirculation of water.
We plan to incorporate root distributions into existing
biome and global models for more realistic representa-
tions of belowground processes. With model develop-
ers, we could then address the effects of changes in
land use or climate for the cycling of C, H,O, and nutri-
ents. Our long-term goal is to link one or more of these
global terrestrial models with a GCM to examine the
feedbacks between vegetation and climate. Such global
models, together with paleo-analyses, provide the only
integrative method for predicting the potential conse-
quences of global environmental change.
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