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Main Messages

Building scenarios and anticipating changes in ecosystem services are
modeling exercises. The reliability of models depends on their data inputs
and the models themselves. This chapter sketches out the state-of-the-art
modeling approaches for critical components of the Millennium Ecosystem As-
sessment scenarios, examines strengths and weaknesses and alternative ap-
proaches, identifies critical uncertainties, and describes high-priority research
that could resolve fundamental uncertainty.

In order to evaluate the MA scenarios, readers must understand the capa-
bilities, uncertainties, and frontiers of the models used to project
changes in ecosystem services. This chapter provides a rigorous scien-
tific discussion of just how confident we can be about different dimen-
sions of the scenario model analyses and where we need to do a great
deal more work. Uncertainty is acceptable as long as it is acknowledged up
front. Although many of the models used to inform scenarios have weak-
nesses, the alternative is to use no models whatsoever. The modeling ap-
proaches and the uncertainties vary according to topic. Hence we take up the
modeling issues one topic at a time, forecasting land cover change, impacts of
land cover changes on local climates, changes in food demand and supply,
changes in biodiversity and extinction rates, impacts of changes in phospho-
rous cycles, impacts of changes in nitrogen cycle and inputs, fisheries and
harvest, alterations of coastal ecosystems, and impacts on human health. The
final sections evaluate integrated assessment models and look at key gaps in
current modeling abilities.

The uncertainties and limitations of models are extensive, and in many
cases proven methods do not exist for the forecasting tasks that we face.
Recurring limitations and constraints include an absence of models that work
well across multiple scales, failure of models to couple interacting processes,
and models based on nonrepresentative subsets of Earth’s ecosystem ser-
vices (such as specific and narrow taxonomic groups or geographic regions).
These limitations do not mean we should not attempt to make a forecast—only
that we should present results with appropriate levels of uncertainty. The act
of attempting to make forecasts where apt methods do not exist has already
spurred enormous research and innovation, such that in five years our fore-
casts will become much more reliable. For this reason, we pay particular atten-
tion to advances in modeling or data that are likely to greatly enhance our
ability to assess alternative ecosystem futures. It is important to recognize that
models are not statements of fact but instead are hypotheses to be evaluated
in light of coming changes in ecosystem services.

4.1 Introduction
The models used to generate scenarios for the Millennium
Ecosystem Assessment are not the only models available.
This chapter examines state-of-the-art modeling ap-
proaches for critical components of the MA scenarios. It
considers the suite of models and modeling approaches that
might be drawn on for scenario analyses. The four core
models actually used for the global MA were IMAGE for
land use change, IMPACT for food demand and agricul-
ture, WaterGAP for water use and availability, and EcoPath
and Ecosim for predicting fisheries impacts. (See Chapter 6
for more-detailed descriptions of the models.) In many cases
these models were chosen because they are the only ones
with global coverage (WaterGAP, for instance).

The state of the art for environmental modeling is
changing very rapidly. This chapter describes the key mod-
eling arenas in which we expect major advances over the

PAGE 73

next 10 years, which in turn could provide improved tools
for future global ecosystem assessments. Hence we discuss
some models, such as for phosphorous cycling, for which
there is no global model but where progress is expected so
that future global assessments will have new tools. Climate
modeling is not covered, since there have been numerous
review papers describing the existing climate models.

In general we seek in this chapter not to advocate or
defend the MA’s choice of IMAGE, IMPACT, WaterGAP,
and Ecosim/Ecopath. Rather, we provide readers with an
overview of the modeling field and the variety of ap-
proaches being pursued, with pointers to where we expect
future research will lead. This venture is so new that there
is no commonly accepted suite of models or, as is the case
for climate models, some standard approach for testing and
contrasting the performance of competing models. In some
cases the actual models used by the MA are virtually all that
is available. In other cases, such as in models for predicting
biodiversity change, there are a variety of options, all under
current research development.

The major types of models are:
• statistical models that rely on observed relationships and

extrapolate into the future;
• first-principle equations that solve for equilibrium or

draw on fundamental laws of transport and mass balance;
• large system (usually simulation) models that mathemati-

cally describe relationships among a web of state-variables
and attempt to include a somewhat complete representa-
tion of the drivers of change;

• expert models and decision support systems that translate
qualitative insights or expertise into quantitative asser-
tions; and

• a wide variety of ‘‘agent-based’’ or cellular automata
models in which the activities of individual actors are
simulated and then aggregated to understand whole-
system behavior.
This is not the only taxonomy of models; alternative

distinctions include stochastic versus deterministic, simula-
tion versus analytical, spatial versus nonspatial, equilibrium
versus nonequilibrium, and so forth. But these categories
are most germane to the strategic choices available when
attempting to perform a global scenario analysis. We have
made an effort to remove as much technical language as
possible. We obviously have not succeeded as well as would
be ideal. However, in many cases what appears to be ‘‘jar-
gon’’ is necessary for precision and to help other technical
experts know exactly what modeling issue is under discus-
sion.

This is not a chapter for light reading. This is a chapter
to read with the idea of learning what is going on in the
modeling world that might be important for future assess-
ments. The topics chosen are not encyclopedic. We struc-
ture discussion around core modeling arenas (such as
fisheries or land use or agricultural production). One of the
biggest areas of modeling research is coupling models of
different processes together and attempting to incorporate
feedbacks among processes. Figure 6.3 in Chapter 6 shows
how the MA linked together to model different processes.
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In the future there may be many more options, and in fact
one conclusion of this chapter is that the linking of different
processes and scales is probably the biggest research need.

When considering each section, it will be obvious that
none of the modeling approaches is ideal. Compromises
must be made because of lack of data. Documentation of
large-system models is often weak, and transparency is not
all it should be. Although many of the models considered
for use in the MA are for forecasts, they are also hypotheses,
as all models are. This chapter seeks to introduce some al-
ternative approaches that might be selected if existing mod-
els fall short. As data are collected, we expect some models
to be rejected and new ones to be used. One outcome of
the MA is pressure for better modeling practices.

4.2 Forecasting Changes in Land Use and Land
Cover
Land use change models attempt to project future changes
in land use based on past trends and the drivers thought to
determine conversions of land between different categories
(forest to agriculture, agriculture to urban, and so forth).
One initial motivation behind land use change modeling
was the prediction of tropical deforestation, with its many
consequences. The field has now broadened geographically
and with respect to the type of land cover transitions it ex-
amines. Central to understanding the human and ecological
aspects of land use and land cover change (or land change)
is a movement toward an interdisciplinary perspective of
change, where social, ecological, and information sciences
are joined (Liverman et al. 1998; Gutman et al. 2004). A
core component of integrated land change science is formed
by spatially explicit, dynamic land change models that ex-
plain and project land cover and land use changes (IGBP-
IHDP 1999; Veldkamp and Lambin 2001). Given that land
use and land cover are dynamically coupled, land change
models provide one of the more powerful ways to combine
human and biophysical subsystems, permitting assessments
of the consequences and feedbacks between the subsystems.
In this sense, these models improve understanding of a
broad range of issues critical to the MA, from the resilience
of ecosystems to human perturbations to society’s responses
to changes in ecosystem services.

Land change models are generally classified according to
their implementation or scale (e.g., Lambin 1994; Rayner
1994; Kaimowitz and Angelsen 1998; Agarwal et al. 2002).
They tend to use a variety of data sources as input. Survey
and census data have long been used by land change models
and are increasingly joined by spatial data (maps, for in-
stance) on land manager activities and socioeconomic fac-
tors. These spatial data are often used in the context of
geographic information systems—software systems that
store, manipulate, and analyze georeferenced data—and are
derived from sources as varied as remotely sensed imagery
and global positioning system receivers. Data are also in-
creasingly gathered over several time periods in order to aid
understanding of land change trajectories. The chief output
of land change models tends to be explanations of past and
present use and projections of future land use.
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4.2.1 Existing Approaches

Perhaps the simplest land change models use a non-iterative
set of equations to seek a single solution where the modeled
system can be characterized as static or existing in equilib-
rium. Gravity models or logistic functions, for example, are
used to estimate population-driven land conversion over
large areas and coarse resolutions. These models are often
based on theories of population growth and diffusion, proc-
esses that are thought to determine cumulative land change
(Lambin 1994).

System models typically represent stocks and flows of
information, material, or energy as sets of differential equa-
tions linked through intermediary functions and data (Han-
non and Ruth 1994). When differential equations are
numerically solved, time advances in discrete steps, which
in turn allows dynamic representation of feedbacks so that
interacting variables can influence one another’s future dy-
namics. Earlier system models of land change were not spa-
tially explicit, but more recent models are increasingly
linked to spatial data (e.g., Voinov et al. 1999; Zhang and
Wang 2002).

Another group of land change models relies on statistical
methods based on empirical observations (Ludeke et al.
1990; Mertens and Lambin 1997; Geoghegan et al. 2001).
For example, econometric models use statistical methods to
test theoretical hypotheses concerning the consequences of
new road systems (Chomitz and Gray 1996; Nelson and
Hellerstein 1997; Pfaff 1999) and of other economic and
ecological variables exogenous to the modeled system (Alig
1986; Hardie and Parks 1997). Unless statistical models are
tied to a theoretical framework, they may underrate the role
of human and institutional choices (Irwin and Geoghegan
2001).

Expert models express qualitative knowledge in a quan-
titative fashion, often in order to determine where given
land uses are likely to occur. Some methods combine expert
judgment with Bayesian probability (Bonham-Carter
1991). Symbolic artificial intelligence approaches, in the
form of expert systems and rule-based knowledge systems,
use logical rules in combination with data to grant models
some capacity to address novel situations. Lee et al. (1992),
for example, use probabilities to build a set of stochastic
branching rules regarding possible land transformations, and
then connect those rules with an independent ecological
model to assess land change impacts. The probabilities for
these branching rules are not estimated in a traditional statis-
tical sense but instead are inferred by interviewing numer-
ous land managers and synthesizing their answers into
probabilities.

Land change models that are based on biologically in-
spired evolutionary computer modeling methods are in-
creasingly common (Whitley 2001). Perhaps the most
promising are models based on artificial neural networks,
computational analogs of biological neural structures (such
as the neuronal structure of the human brain), which are
trained to associate outcomes with given stimuli, such as
associating spatial land change outcomes with inputs like
population density or distance to water bodies (e.g., Shellito
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75State of the Art in Simulating Future Changes in Ecosystem Services

and Pijanowski 2003). Another body of research applies
computational models of Darwinian evolution, such as ge-
netic programming or classifier systems, to tease out causal
linkages between various factors and land change (Xiao et
al. 2002; Manson 2004).

A growing number of land use and land cover change
models are based on cellular modeling methods, which use
models that conduct operations on a lattice of congruent
cells, such as a grid. In the common cellular automata ap-
proach, cells in a regular two-dimensional grid exist in one
of a finite set of states, each state representing a kind of land
use, for instance. Time advances in discrete steps, and future
states depend on transition rules based on a the condition
(or state) of the surrounding immediate neighborhood
(Hegelsmann 1998). In another common cellular modeling
method—Markov modeling—the states of cells arrayed in
a lattice depend probabilistically but simply on previous cell
states. Cellular models have proved their utility for model-
ing land change in linked human-environment systems (Li
and Reynolds 1997; White and Engelen 2000).

Agent-based models are a relatively recent development
in land change modeling. They are collections of agents, or
software programs, which represent adaptive autonomous
entities (like farmers, or institutions that build roads, or local
elders) that extract information from their environment and
apply it to behavior such as perception, planning, and learn-
ing (Conte et al. 1997). Agent-based models have been used
in particular to model small-scale decision-making of actors
in land change (Gimblett 2002; Janssen 2003; Parker et al.
2003).

4.2.2 Critical Evaluation of Approaches

Equation models have the advantage of being simple and
elegant and relatively transparent. These models can pro-
vide a good first estimate of land change at broad scales,
which can be tied to driving forces such as population or
economics. Their chief limitation is the degree of simplifi-
cation necessary to create an analytically tractable system of
equations, which often results in a highly abstract model
that does not reflect many aspects of reality (Baker 1989).
Cross-scale relationships (interactions between different
spatial scales) and time-dependent relationships can be dif-
ficult to model with simultaneous equations, given the need
for common parameters across scales or time and equilib-
rium assumptions.

System models are a powerful means of representing dy-
namic systems. They are widespread across many academic
disciplines. System models can face limitations, however,
because the complexity of real-world parameters can be dif-
ficult to convey in the form of linked equations. Equations
can also limit system models to statistically idealized flows
and stocks, which means that discrete actions or the deci-
sion-making that led to them are not included unless the
system in question is modeled at a small scale or in detail
(Vanclay 2003). In order to focus on key dynamics, the
modeler typically makes assumptions about the aggregate
results of behavior at the potential cost of glossing over or
assuming away key system behavior.
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Statistical models are widely accepted and well under-
stood. Despite this, considerable care must be taken to en-
sure assumptions such as independence of observations,
especially in light of spatial or temporal autocorrelation
(where observations are correlated in space or time) (Grif-
fith 1987) and issues of data aggregation (combining data
from multiple sources or scales) (Rudel 1989). Researchers
have begun to devote attention to the statistical problems
that arise from using spatial data, thereby decreasing the bias
and inefficiencies in parameter estimates and using spatial
and temporal autocorrelation to inform model construction
(Kaufmann and Seto 2001; Overmars 2003). Another com-
plication is that the choice of a land change descriptor can
dramatically influence the result, such as when tracking
change in areal extent of land cover, as opposed to the rate
of change in land cover (Kummer and Sham 1994). Either
variable is correct in the sense that it measures phenomena
of interest, but the variables can give different statistical re-
sults.

Expert models are useful for rendering qualitative expert
domain knowledge into formats traditionally considered
quantitative knowledge. The underlying logical basis that
allows these models to function can create difficulties, how-
ever, since it is challenging to include all aspects of the
problem domain, which can lead in turn to inconsistencies
in model results. Application of expert systems to land
change has remained underexplored due to the difficulty of
logically encoding knowledge that adequately maps onto
the complex spatiotemporal nature of most land use and
land cover change situations. Similarly, it can be difficult to
find experts sufficiently versed in a given situation; when
they are found, it is also difficult to parse their knowledge
into the logical rules and structures necessary to create ex-
pert models (Skidmore et al. 1996).

Evolutionary models have been used with success to
project land use and land cover change. They are in essence
powerful directed-search methods that excel in identifying
patterns and relationships in highly dimensional, noisy, sto-
chastic environments (Kaboudan 2003). At the same time,
theories on how and why evolutionary methods work are
subject to ongoing debate, which serves to blunt the edge
of any analysis based on them (Whitley 2001). One side
effect is that identification of structures of causality and cor-
relation is more straightforward with statistical methods, for
example, than with evolutionary methods because the latter
can too easily be used to create convoluted computer pro-
grams that produce seemingly good results but at the ex-
pense of understanding how or why.

Cellular models are appealing for their capacity to use
relatively simple rules to represent local interactions that can
in turn lead to complex outcomes (Phipps 1989). Cellular
models can suffer from ‘‘spatial orientedness’’ (Hogeweg
1988), however, where the simple cellular neighborhood
relationships do not reflect actual spatial relationships. As
such, these methods may not be suited to model land
change where there are non-uniform or non-local interac-
tions. As a result, they must be buttressed with complex rule
sets to differentiate between the kinds of decision-making that
apply to groups of cells, such as local land tenure structure
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(e.g., Li and Gar-on Yeh 2000). While effective, these devi-
ations from classic cellular models come at the potential cost
of moving models away from their key advantage of sim-
plicity (Torrens and O’Sullivan 2001).

Agent-based models typically complement other ap-
proaches to modeling land change. Their strength lies in the
ability to represent heterogeneous agents (Huston et al.
1988) and to incorporate interaction and communication
among agents (Judson 1994) in a manner unlike that of
other modeling methods. Agent-based models can be dif-
ficult to use, however, since they are often tailored to a
particular setting and create results that are often not gener-
alizable (Durlauf 1997). Much work remains to be done
on establishing common modeling platforms and devising
means of validating agent-based models, particularly when
distinguishing legitimate results from modeling artifacts, as
many of these models remain underevaluated. Similarly,
they are often used at small spatial scales; they need to be
scaled up to larger ones useful for full ecological assessment
(Veldkamp and Verburg 2004; Manson 2003)

In sum, modeling land use change runs the gamut from
relatively straightforward equation-based models to compli-
cated and computationally intensive models. There is a
movement toward greater integration and hybridization of
these approaches in order to compensate for shortcomings
of individual methods and to address outstanding issues in
land change, such as interdisciplinary integration, spatio-
temporal scale issues, and the complexity of land change
(Brown et al. 2004).

Dynamic spatial simulation modeling, for example, in-
corporates cellular modeling to address spatial heterogeneity
and uses system models to represent social and economic
mechanisms in addition to ecological processes such as sec-
ondary succession (Lambin 1997). GEOMOD2 combines
statistical modeling, systems approaches, and expert decision
rules to project land change at the regional scale (Pontius et
al. 2001). Another example is given by the CLUE family of
models, which use a combination of approaches to model
land change and associated phenomena at regional scales
(Veldkamp and Fresco 1996; Verburg et al. 2002). A final
example is found in Integrated Assessment Models that in-
corporate links to the terrestrial environment at continental
and global scales. The IMAGE 2.0 model, for example, in-
corporates land use, land use change, soil information, and
element fluxes at the global scale at half-degree resolution
(Alcamo 1994). Integrated Assessment Models are discussed
at the end of this chapter.

4.2.3 Research Needs

The future of land change modeling is defined in part by
three themes: interdisciplinary research, better integration
of theory and method, and refinement of modeling tech-
niques, including establishing standard rules, measures, and
metrics that provide the rigor found in less expansive mod-
eling approaches common to established subfields (such as
demographic or econometric models) (Rindfuss et al.
2004). First, integration across disciplines appears increas-
ingly necessary with respect to understanding the webs of
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causality underlying land change. The land change research
community has identified three conceptual foci: social sys-
tems, ecological systems, and land managers or decision-
makers (IGBP-IHDP 1995). Heretofore, social systems
such as institutions (rules) have not been incorporated well
into human-environment models. Land change models,
however, increasingly account for institutional settings,
thereby increasing their robustness for use at local to re-
gional scales of analysis (Gutman et al. 2004).

Second, it is increasingly apparent that land change
modeling can be improved and can create greater interest
among the core social and environmental sciences if it is
informed by critical concepts and theory relevant to both
sciences and their coupling. Irwin and Geoghegan (2001),
for example, argue that land change models often claim to
represent human behavior while not explicitly using theo-
ries of human behavior. Similarly, other models proclaim to
address the environment, but it is reduced to nature as a
resource stock for human use, not as part of a functioning
ecosystem. There is therefore an increasing focus on incor-
porating ecosystem models, such as landscape-scale forest
models, with models of land use (He 1999). Greater en-
gagement across disciplines will likely (or it is hoped will)
accelerate the trend of better integration of theory and
method.

Third, the greater integration and hybridization of the
approaches noted earlier speaks to ongoing development of
new methods and metrics of performance. It is important
to note that models are increasingly oriented toward pursu-
ing the fine spatial and temporal resolution necessary to as-
sess human dynamics, such as individual decision-making,
and ecological phenomena, such as biodiversity. Having
both temporal and spatial explicitness is a key need, and
therefore a goal, of land change modeling (Agarwal et al.
2002). Getting the magnitude of land change right is only
part of the goal; getting its location right is the other. Model
performance regarding both needs requires new metrics
(Pontius 2000).

Also important is the extent to which models can also
serve as vehicles to integrate disciplines in a manner that
captures interactions across various real-world human and
environment systems. Most of these methods, for example,
can incorporate some degree of feedback between human
and biogeophysical systems. Some do so explicitly, such as
system models or cellular models, while others, such as ex-
pert models or agent-based models, have been adapted to
accommodate dynamic interactions.

Finally, there is a movement toward increasing model
transparency through mechanisms, such as better user inter-
faces and communication of model results both in and out
of the research community (Parker et al. 2003). The key
stumbling block to incorporating these changes resides less
in the models themselves and more in the disciplinary con-
texts in which they are used. This caution notwithstanding,
land change models promise to provide the foundational
basis for understanding and projecting human-environment
interactions for terrestrial ecosystems.
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4.3 Forecasting Impacts of Land Cover Change
on Local and Regional Climates
Terrestrial ecosystems both influence the climate and in
turn are themselves influenced by the climate (Foley et al.
2003). Scenarios of the future paths of the biosphere (e.g.,
DeFries et al. 2002a) must therefore be viewed as interac-
tive with the climate system. A detailed analysis of this issue
would require intertwining Intergovernmental Panel on
Climate Change predictions and dynamical representations
of future greenhouse gas emissions and their impacts on cli-
mate with a MA-type model of vegetation and biotic re-
sponses that in turn fed back on the greenhouse gas
scenarios. Such an analysis is currently not feasible. How-
ever, a general awareness of the techniques that might be
used should promote improved treatments in future assess-
ments. (Various anthropogenic processes that drive climate
change and can feed back on the biosphere are discussed
extensively in Chapter 13 of MA Current State and Trends.)
An earlier review from a climate modeling perspective is
given in Dickinson (1992).

What are the changes of land use that may significantly
affect climate? They include conversion of natural forest to
other uses, including agroforestry, grazing, and crops; con-
version of grasslands by natural or human factors to other
covers, including shrubs (e.g., Hoffman and Jackson 2000)
and croplands; desertification; initiation or cessation of irri-
gated agriculture; urbanization; draining or creation of sea-
sonal or permanent wetlands; and, in general, anything
changing the overall vegetation density, commonly ex-
pressed in models by its leaf-area index, or changing the
hydraulic or nutrient properties of the soil (such as compac-
tion or salinization).

Discussion here is limited to the question of the current
modeling basis for describing how changes in human land
use can modify climate. Any quantification of the future
impacts on climate of land use change must start with pre-
dictions or scenarios of land use change. These changes
must be described in terms of the parameters that character-
ize the impacts of land on climate through biophysical (that
is, energy and water balance) or biogeochemical effects
(modifying the atmospheric gaseous or particulate composi-
tion). Chapter 13 in the MA Current State and Trends vol-
ume addresses current knowledge as to land use change
modification of climate drivers. Here, we focus on the as-
sessment of the capabilities for future prediction, assuming
we have appropriate information on current conditions
(which in reality we may not always have).

Describing the biophysical impacts of land use and land
cover change on local and regional climate is an area where
the general modeling strategy and methodology is relatively
free of controversy. A single modeling approach—based on
global and regional climate models—is accepted as credible,
so the assessment task is a judgment as to which implemen-
tations of this method are likely to be most successful.
However, application of these models to the question of
the impacts of land cover change on climate is sufficiently
immature that their evaluation has been limited. In other
words, any such application may provide useful guidance,

PAGE 77

but details would have to be presented with ample caveats
and with considerable uncertainties. The most serious bot-
tlenecks for progress are quantification of scenarios of future
land use and land cover change in terms that provide pa-
rameters needed by the models, the lack of test cases with
which modeled impacts of land use/land cover change have
been compared to observations, the absence of a full incor-
poration of feedbacks from changes of vegetation cover in
climate simulations, and uncertainties in the treatment of
the coupling between land cover change and atmospheric
boundary layer processes connected to rainfall.

Biogeochemical connections to terrestrial ecosystems are
detailed in Chapter 13 of the MA Current State and Trends
volume and various management strategies are indicated in
Chapter 12 of the MA Policy Responses volume. This brief
overview of the biogeochemical consequences of land use
change indicates what should be included as output of such
modeling: The terrestrial system includes important stores
of carbon that through land use change can become sources
for greenhouse gases or other significant atmospheric con-
stituents. In addition, terrestrial processes can sequester car-
bon dioxide from the atmosphere and so reduce the impact
of that added by fossil fuel combustion. The release of
methane to the atmosphere by carbon cycling in anoxic
soils can be modified by land use change. Land use change
that extends livestock grazing may increase methane emis-
sions. Changes may also occur in the release of volatile or-
ganic compounds and so affect air quality or the formation
of aerosols, and the latter may have impacts on cloud forma-
tion and precipitation.

4.3.1 Existing Approaches

4.3.1.1 Climate Models as Used to Address Biophysical Impacts
of Land Cover Change

The only general approach to assessing impacts of land use/
land cover change on climate that has a good likelihood of
providing useful information from a policy viewpoint is a
comprehensive approach that integrates global or regional
climate models. Such integration is only likely to be credi-
ble if its starting point is current state-of-the-art climate
models. There are perhaps a dozen state-of-the-art models
worldwide as developed and maintained by large groups of
scientists. These models are extensively evaluated by the
IPCC Working Group I (e.g., IPCC 2001), and so their
summary here can be brief. Such models serve as national
or international resources that are generally available to ap-
propriate collaborators and in some cases freely distributed
from the Internet in a form suitable for use on multiple
computer platforms with documentation to facilitate their
use by independent scientists (e.g., the Community Climate
System Model; Blackmon et al. 2000, 2001). However,
meaningful use of these models still requires adequate scien-
tific background, considerable individual commitment, and
adequate computational resources. Such models have been
under development for several decades by various groups
and have many applications (e.g., Manabe and Stouffer
1996; Osborne et al. 2004).
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Climate is modeled by simulation of the atmospheric
weather and coupled surface processes on an hour-by-hour
and day-by-day basis. The surface processes include an
ocean model, a sea ice model, and a land surface model.
The fluid behavior of the atmosphere and oceans are de-
scribed by partial differential equations that are numerically
integrated. The most advanced such ‘‘Earth System’’ mod-
els have been developed by large teams of scientists with
considerable institutional support. The World Climate Re-
search Programme of the World Meteorological Organiza-
tion is largely devoted to coordination between the various
modeling groups and sponsorship of multiple evaluation ac-
tivities of model components and complete model simula-
tions to improve these models.

Climate is established from the simulations of these
models through various kinds of averaging in time and
space and other such analyses that are commonly used with
observational data or to help diagnose the functioning of
the system. A variety of model outputs are produced, each
of which may be of interest to a different community of
scientists.

The overall strategy for use of these models to address
impacts of some imposed change is relatively simple. The
equations are integrated over a sufficiently long period,
often many simulated years, to establish their climatology.
Such a simulation is then repeated, except for the assumed
change, such as land use (e.g., Maynard and Royer 2004),
and the consequent climate impact and its statistical confi-
dence level is assessed by the difference between the two
states and through its comparison with natural fluctuation
statistics.

The production of a sufficient number of independent
samples from this naturally chaotic system is achieved by
some combination of simulating for a sufficiently long pe-
riod, carrying out the integrations multiple times (ensemble
approach, cf. Boer 2004), and using statistical methods of
pattern analysis to optimize the signal (climate change, for
example) relative to the natural variability (that is, noise)
of the system. Available computational resources, and more
important, questions as to the correctness of model details
may limit such analyses.

The latter issue is addressed and more robust conclusions
are obtained by carrying out the same integration with mul-
tiple independent models and identifying and analyzing any
significantly different results that arise or by assessing the
model components most important for the answer being
sought in terms of how they may contribute to the uncer-
tainty of the result. The time required to equilibrate is nec-
essarily at least as long as the longest time scales of the
individual systems. For the oceans, this is determined by
depth included and can be many centuries for a full ocean.
For prescribed vegetation and soil properties (that is, fixed
soil carbon and nitrogen), soil moisture takes longest to
equilibrate. Models that include the development of forests
or some of the slower soil processes may also require centu-
ries. Large ice sheets may require millennia.

4.3.1.2 Model Components Most Closely Connected to
Biophysical Impacts of Land Use Change
Land surface models couple atmospheric processes with the
conservation of energy and water, which may depend on
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land cover. These models initially simply tracked reservoirs
of water whose temperature was adjusted to conserve
energy by turbulent exchanges with the atmosphere (e.g.,
Manabe et al. 1965; Manabe and Bryan 1969; Manabe and
Wetherald 1975). Later authors (e.g., Dickinson et al. 1981;
Dickinson 1984; Sellers et al. 1986) addressed the need to
include land cover elements that varied geographically and
included greater complexity, such as a vegetation compo-
nent and multiple temperature and soil water variables.

The largest modifications in simulations from those of
earlier efforts resulted from the stomatal controls in plants
on transpiration. This aspect is now modeled from carbon
assimilation. Its inclusion (e.g., Sellers et al. 1997) and that
of snow cover and micrometeorology is now relatively ad-
vanced and well understood, but implementations may dif-
fer in details because of different objectives and institutional
histories (e.g., Dai et al. 2003). Improvements in the map-
ping of different land covers and their correlations with leaf
area and albedo are being implemented with use of new
global remote sensing data (e.g., Buermann et al. 2002; Tian
et al. 2004a, 2004b). Many of the more important impacts
of land use/land cover change, such as impacts on the hy-
drological cycle, require not only these components but
also the coupling of the surface micrometeorology to atmo-
spheric boundary layer processes.

What attributes of land use changes need to be incorpo-
rated in climate models? The answer to this question entails
all key attributes that current climate models use as inputs
when calculating energy fluxes. These include the LAI and
hydraulic properties mentioned earlier, albedo and surface
roughness, stomatal functioning as an element of evapo-
transpiration and carbon cycling, and the ways energy fluxes
might be changed independent of the above—for example,
through nutrient changes. These properties are included ei-
ther from prescribed vegetation cover with seasonal phe-
nologies or through models of the vegetation dynamics.

It is currently not practical to include a wide variety of
plant species, so that the climate role of vegetation is repre-
sented by 10–20 ‘‘plant functional types’’ (e.g., Bonan et al.
2002). The extra detail of subtle species-differences within
the same functional group may never yield sufficient addi-
tional predictive power to make species-specific models de-
sirable. The dynamics of vegetation as it interacts with soil
moisture and its climatic environment can be formulated at
various levels depending on the time scales involved. For
changes over a few years or less, only leaf properties need
to be included. On longer time scales, growth, competition,
and hence initiation and survival of individual plant types
may have to be included to characterize the terrestrial feed-
backs adequately.

In general, the vegetation cover can have strong influ-
ences on the surface exchanges of energy and water. Past
sensitivity studies (e.g., Bonan et al. 1992; Foley et al. 1994)
have revealed that a transition from systems shaded by trees
to short vegetation covered by snow can have a large posi-
tive feedback on climate in high latitudes. Raupach (1998)
has shown these sorts of response to gradual temperature
changes are not always incremental but can instead involve
abrupt transitions or thresholds. In addition, spatial scales of
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surface heterogeneity in terms of wind, soils (e.g., Zender
and Newman 2003), soil moisture, and vegetation will in-
teract with the underlying turbulent convection to structure
its spatial scale and consequently the probability and
amounts of precipitation.

4.3.1.3 Examples of Land Use Change Addressed in Past
Literature

Various idealized scenarios have been studied. One popular
question has been the possible impacts of complete conver-
sion of the Amazon forest to degraded pasture (e.g. Dickin-
son and Henderson-Sellers 1988; Lean and Warrilow 1989;
Shukla et al. 1990; Nobre et al. 1991; Zhang et al. 1996;
Voldoire and Royer 2004). Early analyses of this extreme
scenario differed fairly widely not only in results but also in
how the scenario was translated into model parameters. The
controlling parameters are the surface albedo, surface
roughness, soil hydrological properties, and possibly the ca-
pacity of the vegetation to transpire through stomatal func-
tioning.

The most obvious changes when the Amazon forest is
converted to pasture are that its albedo increases and it be-
comes a much smoother surface. The increased albedo re-
duces surface sensible and latent fluxes and ultimately alters
precipitation in almost all models; the decreased surface
roughness tends to make the surface warmer, and the in-
creased upward infrared radiation leads to further reduction
of boundary layer buoyancy generation. Substantial feed-
backs occur with atmospheric cloud cover, with less precip-
itation being accompanied by less cloud cover and more
surface solar heating. The need for more realistic scenarios
that address the consequences of conversion of smaller areas
and forest fragmentation is recognized but has not yet been
adequately addressed.

A few studies have addressed conversions in the United
States between forest and cropland (e.g., Bonan1999; Pan et
al. 1999; DeFries et al. 2002a). Although such conversions
superficially appear similar to Amazon deforestation, results
have been remarkably different, and, in particular, the sur-
face temperatures for cropland have declined rather than
increased. This effect appears to be a result of increases in
evaporative cooling and suggests that plant nutrition effects,
especially nitrogen levels, may provide strong coupling to
surface temperatures and precipitation.

4.3.1.4 Models of Biogeochemical Impacts of Land Cover
Change on Climate

Biogeochemical models to estimate greenhouse gas emis-
sions from land cover change are much simpler than the
climate models used to estimate the biophysical impacts.
Most efforts have focused on the release and uptake of at-
mospheric carbon dioxide from land cover change, particu-
larly deforestation. The most widely used approach is a
‘‘bookkeeping’’ model, in which estimates of the areas of
each type of land use change are combined with prescribed
response curves for decay and regrowth (Fearnside 2000;
Houghton and Hackler 2001).

The land use changes in the bookkeeping model include
the conversion of natural ecosystems to croplands and pas-
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tures, the abandonment of agricultural lands with subse-
quent recovery of natural vegetation, shifting cultivation,
harvest of wood (forestry), plantation establishment, and, in
some instances, fire management (exclusion and suppression
of fire). The bookkeeping approach requires three basic in-
puts: rates of clearing, biomass at time of initial clearing, and
decay and regrowth rates following clearing. Houghton and
Hackler (2001) have applied the model at a very coarse,
continental scale. More recently, remote sensing analysis to
determine rates of deforestation have been combined with
the bookkeeping model for more spatially explicit estimates
of carbon emissions (Achard et al. 2002; DeFries et al.
2002b).

In addition to the bookkeeping approach, process mod-
els of the terrestrial carbon cycle have been used to estimate
carbon fluxes from land use change (DeFries et al. 1999;
McGuire et al. 2001). Such models simulate carbon stocks
in vegetation and soil and the uptake and release of carbon
through photosynthesis and respiration, based on variables
such as climate, incoming solar radiation, and soil type. The
most recent developments are dynamic models that simu-
late the response of vegetation to climate change and en-
hanced growth from elevated atmospheric carbon dioxide
concentrations, as well as the resulting feedbacks to the at-
mosphere through changes in the vegetation’s uptake and
release of carbon dioxide (Cox et al. 2000). Anthropogenic
land cover changes have not yet been incorporated in this
framework.

Most efforts to model greenhouse gas emissions from
land cover change have focused on carbon dioxide. Models
to estimate emissions of other greenhouse gases from land
use change, including methane from landfills, rice paddies,
and cattle, and nitrous oxide from agricultural soils, are
hampered by incomplete understanding of the biological
processes.

4.3.2 Critical Evaluation of Approaches

4.3.2.1 Modeling of Biophysical Impacts of Land Cover Change

This section assesses how successful we judge models to be
in attempting to model the impacts of land cover change
on local climates. The local and regional climate variables
that are modeled are primarily surface temperature and hu-
midity and rainfall. We address how well this is done from
the viewpoint of somebody who might want to use these
models as a tool. A description of the details of any one
model is far too complex to be presented here. Rather, in
order to assess their success, we describe in broad-brush
terms what the models are trying to do. Details are omitted,
such as the fact that surface temperature is not a single vari-
able but has several important elements that must be indi-
vidually modeled. The type of rainfall believed to be most
affected by land use change is of the ‘‘convective’’ (thun-
derstorm) variety. Because it involves important processes
that occur on scales that are not incorporated in current
models, we judge that changes of this variable are not yet
reliably modeled.

4.3.2.1.1 Modeling of temperature change
Current modeling can be judged to provide, in principle,
adequate results for temperature changes on a large scale.
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Temperatures change with land cover change because of
changes in absorbed solar radiation (controlled by cloud
cover and albedo), because of changes in the fraction of
energy going into evapotranspiration, and because of
changes in roughness elements alter turbulence patterns.
The land surface modeling of these relationships is limited
primarily by uncertainties as to how albedo, roughness ele-
ments, clouds, and precipitation will change with land use
change. Mathews et al. (2004) estimate that past land cover
change has cooled the world by between 0.1 and 0.2 K and
that the carbon released by this land cover change has
warmed the world by a comparable amount.

4.3.2.1.2 Representation of heterogeneous land surface in models

Land cover is heterogeneous on a spatial scale that is much
finer than the coarse grid cell size of climate models; these
models treat all vegetation within grids the size of many
thousands of square kilometers as essentially homogeneous.
Because the resolution is so coarse, it is not possible to sim-
ulate with confidence the possible effects of forest fragmen-
tation and inclusion of patches of other cover, such as crops
or pasture. Local micrometeorological factors that will
change with land cover exert considerable controls on local
and regional temperatures. Since such changes are confined
to the fraction of land whose use/cover has been changed
and can go in both directions, their contribution to global
temperature changes is usually thought to be relatively
small. However, they can become considerably more sig-
nificant if temperature changes are weighted by various risk
factors such as proximity to human populations. The mi-
crometeorological effects for particular local or regional sys-
tems may have important consequences for precipitation, as
discussed later, but we do not understand how to include
such effects in climate models.

4.3.2.1.3 Difficulties in modeling rainfall

Modification of rainfall is potentially one of the most im-
portant climatic impacts of land use change (e.g., Pielke
2001). This interesting issue is not well developed because it
involves scaling aspects of modeling that are not sufficiently
advanced. However, it is possible to clarify what is most
important. Precipitation in summertime and tropical sys-
tems (that is, rainfall) is largely or entirely convective. It is
this type of precipitation that is most sensitive to the atmo-
sphere’s lower boundary and hence land use change. Win-
tertime precipitation is largely generated by large-scale
storm systems that are less connected to the surface and
often originate over the ocean.

Convective rainfall is initiated primarily because of the
instability (positive buoyancy) of near surface air that acts in
two ways: it allows convective plumes to penetrate from
the boundary layer up to the level of free convection,
where moist instability carries it further, as high as the top of
the tropopause; and through horizontal gradients it creates
pressure forces that drive horizontal convergence, hence
further uplift. The drivers of these mechanisms are land het-
erogeneities, which are currently lost in the processes used
to scale the effects of motions on these scales to the scales
resolved by climate models. In principle, scaling should in-
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clude all the statistical properties given by distributions of
the small-scale systems that couple back to the large scale.
However, the formulations currently used assume an under-
lying homogeneous surface and may be intrinsically incapa-
ble of determining the changes of rainfall from land use
change.

4.3.2.1.4 Difficulties assessing the significance of modeled impacts of
land use change

Modeling studies test the sensitivity of climate to land cover
changes by varying only the land cover in the model. In
reality, land cover is only one of many factors that deter-
mine climate, including winds, incoming radiation, and
clouds. These confounding factors make it difficult to iden-
tify a ‘‘land cover signal’’ from natural variability either in a
model or in observations. Although sound statistical proce-
dures are available for determining the ‘‘signal to noise’’
ratio of systems with spatially and temporally correlated ran-
domness (e.g., Von Storch and Zwiers 1999), these have
commonly not been used in studies of climate change from
land use change. This limitation hampers interpretation of
impacts reported in the literature.

4.3.2.1.5 Other complexity issues related to inadequacies of scaling
methodology

More detailed models traditionally calculate evapotranspira-
tion in terms of three components: transpiration, soil evap-
oration, and canopy evaporation (interception loss). Model
results depend on how these are apportioned, which de-
pends strongly on precipitation intensities. One difficulty
with many models is that they apply their calculated precip-
itation and radiation from the atmospheric model uniformly
over their grid-squares. These resolution elements are gen-
erally of much larger scale than the occurrence of individual
convective systems, however, and hence poorly match ac-
tual local precipitation intensities and radiation. Appropriate
precipitation and radiation downscaling must be used in the
model to obtain better results. Because of the use of faulty
satellite-derived data, some models have underestimated the
LAI of tropical forests and in doing so have exaggerated the
losses of soil water to bare soil evaporation.

Current parameterizations of runoff do not provide very
plausible schemes for the downscaling to the scales on
which precipitation and runoff occur. Because runoff pro-
vides a major feedback on soil moisture, inadequacies in
its treatment introduce uncertainty into the issue of soil-
moisture/vegetation interaction (e.g., Koster and Milly
1997).

4.3.2.2 Modeling of Biogeochemical Impacts of Land Cover
Change

Model estimates of greenhouse gas fluxes from land cover
change have a large range of uncertainty. Carbon dioxide
emissions from deforestation and uptake from regrowth are
the most uncertain components of the global carbon budget
reported by the IPCC. The uncertainties arise from impre-
cise data on the required model inputs. Estimates of the
rates of deforestation vary, and spatially explicit data cover-
ing the entire tropical belt are not available. These estimates
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are improving with the use of satellite data, but there is
currently no pan-tropical observational system for monitor-
ing deforestation. A second source of uncertainty arises
from lack of spatial data on biomass distributions prior to
clearing. Field measurements of biomass are based on point-
samples, which are difficult to extrapolate over larger areas.
Satellite capabilities to assess biomass distributions over large
areas are not in place.

Estimates of other greenhouse gas fluxes—methane and
nitrous oxide—from land cover change are even more un-
certain than estimates of carbon dioxide fluxes. For these
gases, inadequate understanding of the biological processes
limits the modeling capabilities.

4.3.3 Research Needs

Future scenarios need to provide data quantified for input
to climate models. Specifically, they need to describe in
quantitative terms how the surface structure and its radiative
properties have been modified, using parameters used by
the climate models.

Test cases are needed with simultaneous observations of
land use change and climate change to test modeling pre-
dictions; some areas expected to undergo large land use
change in the future should be equipped with an adequate
observational system to measure the consequent climate
change.

An interactive vegetation-climate dynamical system
needs to be a component of future scenarios. That is, quan-
titative trajectories of land use on a global basis should be
prescribed in terms of quantities that can be used as bound-
ary conditions for climate models. In this way, it would
become possible to address the synergies between land use-
driven climate change and greenhouse warming.

For the biogeochemical fluxes, improved monitoring
systems for deforestation and biomass distributions are
needed to reduce uncertainties of carbon emitted to the at-
mosphere as a result of land cover change. In addition, dy-
namic models that estimate changes in carbon fluxes as a
result of vegetation being altered by climate change need to
also include vegetation changes expected because of human
activities, which will also be altering the landscape.

4.4 Forecasting Change in Food Demand and
Supply
Over the past 50 years, there have been at least 30 quantita-
tive projections of global food prospects (supply and de-
mand balances), as well as numerous qualitative predictions,
with the latter often tied to short-term spikes in global food
prices. Global simulation models that simulate the interrela-
tionships among population growth, food demand, natural
resource degradation, and food supply are yet another class
of forecasting exercises (Meadows et al. 1972, 1992; Mesar-
ovic and Pestel 1974; Herrera 1976); but they are not com-
monly used today.

The number of players engaging in projections of future
food demand, supply, and related variables at the global
level has been declining over time. Important organizations
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conducting projections on the global scale include the Food
and Agriculture Organization of the United Nations, the
Food and Agriculture Policy Research Institute, the Inter-
national Food Policy Research Institute, the Organisation
for Economic Co-operation and Development, and the
U.S. Department of Agriculture. Other food projection ex-
ercises focus on particular regions, like the European
Union. Finally, many individual analyses and projections are
carried out at the national level by agriculture departments
and national-level agricultural research institutions. Results
from some of these models are published periodically with
updated projections. In addition to their differing coverage
and regional focus, existing approaches also vary in the
length of the projections period, the approach to modeling,
and in the primary assumptions made in each model. The
focus in this section will be on global food projection
models.

4.4.1 Existing Approaches

This section examines the evolution of food supply and de-
mand projections and examines current food projection
models based on various criteria, following McCalla and
Revoredo (2001), who carried out a critical review of food
projection models.

4.4.1.1 Evolution of Food Supply and Demand Projections

Early food models (for example, the mathematical model of
population growth posited by Thomas R. Malthus) focused
on potential food gaps by comparing fixed land resources
with rates of growth of population. This was followed by a
requirements approach, where minimum nutritional needs
were multiplied by population to produce projected food
needs; on the supply side, yield increases were added to
supply projections.

By the 1960s, income and Engel curves (statistical rela-
tionship between consumption and income) were added to
food demand projections, while Green Revolution changes
in food production, as well as resource limits, were added
on the supply side. Food price instabilities in the early
1970s, making the assumption of constant prices illusionary,
spurred the disaggregation of global models to the national
level, with domestic supply and demand, country by coun-
try, and appropriate cross-commodity (maize and wheat, for
instance) relationships embedded and with explicit recogni-
tion of policy built in. Disaggregation also allowed for a
more detailed representation of changes in food prefer-
ences, including the diversification of diets with changing
income levels. Models thus graduated from supply-and-
demand gap projections into global price equilibrium trade
models, which are more sophisticated, much larger, and
more expensive to maintain (McCalla and Revoredo 2001).

4.4.1.2 Approach to Food Projections Modeling

The main types of global food projection models fall into
two categories, trend projection models and world trade
models.

Trend projection models project supply and demand
separately based on historical trends. Relative prices are as-
sumed to be constant over time. In pure trend projection
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models, which include most of the existing trend models,
the difference between projected consumption and pro-
jected production creates a gap, indicating food surpluses
and shortages at the regional or global level, which can be
bridged through trade. FAO’s projections during the 1960s
to the 1980s, IFPRI’s 1977 and 1986 projections (IFPRI
1977; Paulino 1986), OECD’s 1960s projections, and
USDA’s 1960s projections fall into this category. In ex-
tended trend projection models, a spatial trade model is
used to distribute the projected surpluses or deficits among
regions and countries (Blakeslee et al. 1973). This can be
done in the form of transportation models, which minimize
the cost of moving surpluses to shortage locations by esti-
mating food flows over geographical regions.

The simplest world trade models assume a global supply
and demand equilibrium. In particular, these models esti-
mate supply and demand functions at the country/regional
levels; projections are aggregated at the world market,
where prices adjust until global supply equals global de-
mand. These models are also called price endogenous mod-
els. All major food projection models in use fall into the
class of global non-spatial trade models. They include the
different versions of FAO’s World Food Model (FAO
1993), partly used in FAO’s World Agriculture: Towards
2015/30 study (Bruinsma 2003), IFPRI’s IMPACT model
(Rosegrant et al. 2001), FAPRI’s commodity models (Mey-
ers et al. 1986), the World Agricultural Model from the
International Institute for Applied Systems Analysis (Parikh
and Rabar 1981), the Free University of Amsterdam’s
Model of International Relations in Agriculture (Linne-
mann et al. 1979), and the World Bank model (Mitchell et
al. 1997).

An alternative form of world trade models starts by as-
suming the costs of trade among regions have been mini-
mized (using output from transportation models), subject to
constraints that represent the characteristics of the different
regions (Thompson 1981). These models depict spatially
varying patterns of trade between different regions. Unfor-
tunately, spatial models do not predict trade flows well, due
to the reality of quantitative trade barriers, the heterogene-
ity of commodities in terms of characteristics and seasonal-
ity, and risk diversification strategies being pursued by
importers (McCalla and Revoredo 2001).

Earlier models used linear equations, while more recent
versions are based on nonlinear elasticity equations, which
can better handle sharp perturbations (or ‘‘shocks’’). Early
projection models were static, with point estimates for fu-
ture years dependent on projected rates of change in popu-
lation and other key variables. The alternative approach
entails recursive models that estimate all variables annually,
moving repeatedly toward the final year, allowing for the
observation of the path of adjustment. Most projection
models are partial equilibrium models—that is, they focus
on the agricultural sector instead of representing the entire
economy.

4.4.1.3 Coverage

Country and commodity coverage differ by model.
Whereas some models explicitly focus on developing coun-
tries (for example, the IMPACT and FAO models) and
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therefore tend to aggregate industrial countries and regions,
others have been specifically developed to analyze the food
supply, demand, and trade projections of industrial coun-
tries, in general, or the European Union, in particular, like
CAPRI of Bonn University (CAPRI 2004).

The European Commission, for example, recently com-
missioned a study on the impact of its Mid-Term Review
proposals for the year 2009 with reference to a status quo
policy situation, involving six different agricultural projec-
tion models: the EU-15 agricultural markets model and the
ESIM model, both under the Directorate General for Agri-
culture of the EU (DG-AGRI 2003a); the FAPRI model
(FAPRI 2002a, 2002b); the CAPRI model of the Univer-
sity of Bonn, operating at the regional level (DG-AGRI
2003b); the CAPMAT model of the Centre for World Food
Studies of the University of Amsterdam and the Nether-
lands Bureau for Economic Policy Analysis in The Hague
(DG-AGRI 2003a); and the CAPSIM model, operating at
the national level, also from the University of Bonn (DG-
AGRI 2003a, 2003c). Similarly, commodity coverage dif-
fers among models, depending on the region or issue of
concern. IMPACT, for example, started out with a focus on
rice, followed by other staple crops of importance to the
food security situation of poor countries, before adding
higher-value commodities.

4.4.1.4 Projections Period

Long-term projections include those by IFPRI and FAO
(as presented in World Agriculture: Towards 2015/30). Short-
term projections have been developed by FAO, FAPRI,
USDA, and OECD.

FAO has produced a series of long-term projections, be-
ginning with the Indicative World Plan for Agricultural Devel-
opment (FAO 1970), followed by World Agriculture: Towards
2000 (Alexandratos 1988), World Agriculture: Towards 2010
(Alexandratos 1995), and World Agriculture: Towards 2015/
2030 (Bruinsma 2003). These are recursive global non-
spatial trade models. The most recent study has a base year
of 1997–99, incorporates the medium-variant U.N. popu-
lation projections (2001), GDP data from the World Bank,
and agricultural data from its own databases to project food
supply, demand, and net trade for crops and livestock prod-
ucts for 2015 and 2030.

FAO develops projections through many iterations and
adjustments in key variables based on extensive consulta-
tions with experts in different fields, particularly during
analysis of the scope for production growth and trade. The
end product may be described as a set of projections that
meet conditions of accounting consistency and to a large
extent respect constraints and views expressed by the spe-
cialists in the different disciplines and countries (Bruinsma
2003, p. 379). The FAO study only uses one scenario: a
baseline that projects the future that the authors anticipate
to be most likely.

The International Model for Policy Analysis of Agricul-
tural Commodities and Trade was developed at IFPRI in
the early 1990s (Rosegrant et al. 1995). IMPACT is a repre-
sentation of a competitive world agricultural market for 32
crop and livestock commodities and is specified as a set of
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43 country or regional sub-models; supply, demand, and
prices for agricultural commodities are determined within
each of these. World agricultural commodity prices are de-
termined annually at levels that clear international markets.

IMPACT generates annual projections for crop area,
yield, and production; demand for food, feed, and other
uses; crop prices and trade; and livestock numbers, yield,
production, demand, prices, and trade. The current base
year is 1997 (average of 1996–98). The model uses FAO-
STAT agricultural data (FAO 2000); income and population
data and projections from the World Bank (World Bank
1998, 2000) and the United Nations (UN 1998); a system
of supply and demand elasticities from literature reviews
and expert estimates; rates of malnutrition from the U.N.
Administrative Committee on Coordination–Subcommittee
on Nutrition (ACC/SCN 1996) and the World Health Or-
ganization (WHO 1997); and calorie-malnutrition relation-
ships developed by Smith and Haddad (2000).

The Food and Agricultural Policy Research Institute
publishes short-term projections of the U.S. as well as an
annual world agricultural outlook (FAPRI 2003). This con-
sists of an integrated set of non-spatial partial equilibrium
models for major agricultural markets, including world
markets for cereals, oilseeds, meats, dairy products, cotton,
and sugar. For each commodity, the largest exporting and
importing countries are treated separately, with other coun-
tries included in regional groupings or a ‘‘rest of world’’
aggregate. For most countries and commodities, the model
estimates production, consumption, and trade; in many
cases the model also estimates domestic market prices,
stocks, and other variables of interest. Parameters are esti-
mated based on econometric techniques, expert opinions,
or a synthesis of the literature. Similar to IFPRI’s IMPACT
model, area is generally a function of output and input
prices and government policies, while yield equations in-
corporate technical progress and price responses. The pro-
jection horizon is 10 years (DG-AGRI 2003a).

The OECD Agricultural Outlook provides a short-term
assessment (five years ahead) of prospects for the markets of
the major temperate-zone agricultural products of OECD
members (OECD 2003). The projections to 2008, pre-
sented in the latest Outlook based on the recursive AGLINK
model, are considered a plausible medium-term future for
the markets of key commodities. Projections are developed
by the OECD Secretariat together with experts in individ-
ual countries from annual questionnaires supplemented
with data from FAO, the United Nations, the World Bank,
and the IMF to determine market developments in the
non-OECD area. National market projections are then de-
veloped with AGLINK and linked with one another
through trade in agricultural products. Final results are pre-
sented following a series of meetings of the various com-
modity groups (cereals, animal feeds and sugar, meat and
dairy products) of the OECD Committee for Agriculture
(Uebayashi 2004).

The U.S. Department of Agriculture also produces
short-term baseline projections of the agricultural situation
12 years into the future (USDA 2003). These projections
cover agricultural commodities, trade, and other indicators,
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including farm income and food prices. The USDA presents
a baseline scenario that projects a future with no shocks, a
continuation of U.S. policies, and other specific assump-
tions related to agricultural policies, the macro economy,
weather, and international development. Crops included
are corn, sorghum, barley, oats, wheat, rice, upland cotton,
and soybeans, as well as some fruit, vegetable, and green-
house/nursery products. The model also produces projec-
tions for livestock, including beef, poultry, and pork. The
projections that are presented tend to focus on the situation
in the United States.

4.4.2 Critical Evaluation of Approaches

In their assessment of global projection models, McCalla
and Revoredo (2001 p. 39) conclude that projections with
shorter time horizons are more accurate than those with
longer horizons; that projections are more accurate for ag-
gregations of components—regions, commodities—than
for the component parts themselves; and that projections
for larger countries tend to be more accurate than for
smaller ones. Data problems are a major cause of error, es-
pecially in developing countries. Moreover, data deficien-
cies are most frequently encountered in countries with
severe food security problems, leading to erroneous conclu-
sions and making it particularly difficult to develop ade-
quate policy interventions.

For industrial countries, modeling rapidly changing,
complex domestic policies, including quantitative border
restrictions, is a major issue of concern. Rosegrant and
Meijer (2001) point out that for IMPACT, the main dis-
crepancies in the projections are due to short-term variabil-
ity, such as the collapse of the Soviet Union or major
weather events, which cause large departures from funda-
mental production and demand trends—variability that
long-term projection models are not intended to capture.

Most of the currently used projection models are equi-
librium models, which by construction require continuous
adjustment to produce consistent, stable conclusions (Mc-
Calla and Revoredo 2001).

Food projection models typically produce alternative
scenario results, which can then be used to alert policy-
makers and citizens to major issues that need attention. A
test for the usefulness of these models may therefore be
whether the results of these models (for example, the differ-
ent scenarios) enrich the policy debate (McCalla and Re-
voredo 2001).

While models can make important contributions at the
global and regional levels, food insecurity will be increas-
ingly concentrated in individual countries with high popu-
lation growth, high economic dependence on agriculture,
poor agricultural resources, and few alternative develop-
ment opportunities. These countries continue to be over-
looked in regional and global studies because, overall,
resources are sufficient to meet future food demands.

Each of the models described includes several critical as-
sumptions in their approaches. Although the general meth-
odology and underlying supply and demand functional
forms are well established in the literature and have been
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widely validated, the details of how to implement these
principles in specific models are not agreed on. For exam-
ple, the elasticity of supply and demand functions is often
unknown. Moreover, the supply and demand functions
must be adjusted by growing incomes or population
growth, which are not easily predicted and thus introduce
an exogenous layer of uncertainty.

4.4.3 Research Needs

Future research should include the integration of poverty
projections with global food supply and demand projec-
tions. In addition, distributional consequences of such pro-
jections need examination. Moreover, research aimed at
generating future food security–environment scenarios
must sufficiently disaggregate agroecologies and commodi-
ties so that chronically food-insecure countries do not get
overlooked in regional/global modeling exercises. To rep-
resent the nexus of poverty, food insecurity, and land degra-
dation, we will need models that better treat the way
changes in ecosystems influence these factors and in turn
are driven by them. Last, there is clearly the possibility that
new technologies, most notably genetically modified crops,
could alter food production systems in ways that have im-
plications for human well-being, local economies, and land
practices. A forthcoming study by the National Research
Council of the U.S. National Academy of Sciences is focus-
ing on alternative futures due to biotechnology, and that
study could be a foundation for better models of food pro-
duction.

4.5 Forecasting Changes in Biodiversity and
Extinction
Forecasting changes in biodiversity is key to developing
plausible scenarios of the future. Unfortunately, biodiversity
does not mean the same thing to all ecologists and cannot
be assigned one unambiguous metric. For practical reasons,
the MA scenarios focus on species richness. Changes in spe-
cies richness include both gains and losses of species. This
section briefly outlines several approaches to predicting
changes in species richness on the time scale of 100 to 1,000
years. Global extinction is considered by some to be the
most serious of all the anthropogenic global changes be-
cause it is the only one that will never be reversed.

4.5.1 Existing Approaches

4.5.1.1 Qualitative Approach

One of the earliest attempts to develop global biodiversity
scenarios used a qualitative approach (Sala et al. 2000;
Chapin III et al. 2001). The exercise focused on terrestrial
biomes and freshwater ecosystems, but the qualitative ap-
proach could be used similarly to evaluate patterns of bio-
diversity change in the oceans. The globe was divided into
11 biomes and two types of freshwater ecosystems, and sce-
narios were developed for the year 2100. The first step was
to identify, based on expert opinion, the major drivers of
global biodiversity change. The major drivers were deter-
mined to be changes in land use, climate, nitrogen deposi-
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tion, biotic exchange, and atmospheric concentration of
carbon dioxide. Biotic exchange referred to the accidental
or deliberate introduction of non-native species into an
ecosystem.

The second step broke the analysis into two compo-
nents: assessing the drivers of biodiversity change and char-
acterizing biome-specific sensitivity to changes in those
drivers. Patterns of change for drivers were described from a
series of existent models. For example, the IMAGE 2 model
(Alcamo 1994) provided patterns of global land use change,
and Biome 3 (Haxeltine and Prentice 1996) yielded esti-
mates of climate change and potential vegetation. More
qualitative models were used to estimate the global patterns
of the other drivers. Drivers were not expected to change
uniformly across biomes. Although there was agreement
that biomes ought to react differently to changes in drivers,
there was no quantitative assessment of biome sensitivity to
each driver. Instead, the exercise developed a ranking of
sensitivity for each driver and biome based on the opinion
of experts representing each biome. These experts have all
worked in the biome that they were representing; their ap-
preciations of biome sensitivity were based on their under-
standing of the ecology of each biome and were calibrated
across biomes at a workshop at the National Center for
Ecological Analysis and Synthesis, University of California,
Santa Barbara. Sensitivity estimates were ranked on a scale
from 1 to 5.

The relative expected change in biodiversity from each
biome and freshwater ecosystem resulting from each driver
was calculated as the product of the expected change in the
driver and the biome sensitivity. Finally, the total biodiver-
sity change per biome depended on the interactions among
drivers of biodiversity change. The exercise developed
three alternative scenarios by assuming that there were no
interactions among drivers, that the interactions were syn-
ergistic, or that the interactions were antagonistic. The
three scenarios would encompass a range of potential out-
comes. Information was not available to assign a higher
probability for any of the alternatives. Computationally, the
no-interaction scenario calculated total biodiversity change
as the sum of the effects of each driver, the synergistic sce-
nario used the product of the change resulting from each
driver, and the antagonistic scenario used the change result-
ing from the single most influential driver.

4.5.1.2 Correlation to Environmental Variables

Climate has been identified as one of the most important
correlates of species richness for a wide range of taxa (Ro-
senzweig 1995; Whittaker et al. 2001; Brown 2001). In
combination with changing topography, climate change has
been invoked to explain speciation and extinction events in
such diverse taxa as hominids (Foley 1994), trees (Ricklefs
et al. 1999), carabid beetles (Ashworth 1996), and birds
(Rahbek and Graves 2001). Research on elevational clines
in species richness (e.g., Rosenzweig 1995; Lomolino 2001;
Brown 2001) further supports a fundamental role for cli-
mate as a determinant of patterns of biodiversity.

Many species exhibit a latitudinal gradient in species
richness (e.g., Turpie and Crowe 1994; Cumming 2000)
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that is strongly linked to climate (Gaston 2000; Whittaker
et al. 2001), available energy, and primary production (e.g.,
O’Brien 1998). These gradients have been used as one way
of predicting species richness over large areas, based on the
correlation between species occurrences and environmental
conditions. Correlative approaches typically use general lin-
ear models to estimate species richness in unsampled areas.
Species richness is frequently considered as a response variable
in its own right. An alternative but more time-consuming
approach is to model individual species occurrences and
then to stack species models to produce estimates of species
richness.

A special class of ‘‘correlative models’’ that has been used
to predict biodiversity impacts is the so-called bioclimatic
envelope approach (Midgley et al. 2002; Erasmus et al.
2002). These models identify the current distribution of
species in terms of climatic and other environmental vari-
ables (topography, soils, etc.) and then infer local disappear-
ance of species because new conditions are outside the
species ‘‘bioclimatic envelope.’’ This approach cannot really
predict whether a species will become extinct; instead, it
predicts changes in where species should occur. If no appro-
priate climate zone exists, then it might be concluded that
a species will go extinct, but this is not certain.

4.5.1.3 Species-Area Relationship

The most widely used approach for predicting species loss
entails the application of the species-area relationship
(Pimm et al. 1995; May et al. 1995; Reid 1992). This de-
scribes one of the most general patterns in ecology (Rosenz-
weig 1995; Brown and Lomolino 1998; Begon et al. 1998):
the relationship between the area of sampling and the num-
ber of species in the sample follows the power law,

S � cAz

where S is the number of species, A is the sampled area, z
is a constant that typically depends on the type of sampling,
and c is a constant that typically depends on the region and
taxa sampled. This was the approach adopted for the terres-
trial biodiversity scenarios, and its assumptions and uncer-
tainties are discussed at length in Chapter 10. Here we
simply revisit the high and low points of this approach.

The idea behind using the SAR to estimate extinction
rates is relatively straightforward; it simply assumes that the
number of species remaining after native habitat loss follows
a species-area curve, where A is the area of native habitat
left. A typical value of z for islands of an oceanic archipelago
or other types of habitat isolates (mountaintops, forest frag-
ments, etc.) is 0.3 (Rosenzweig 1995). It takes from a few
decades to several centuries for the species number in the
remnant habitat to reach the equilibrium predicted by the
SAR (Brooks et al. 1999; Ferraz et al. 2003; Leach and Giv-
nish 1996; see also Chapter 10). If habitat restoration takes
place during this time, the extinctions will be fewer than
predicted by the SAR.

4.5.1.4 Threat Analyses Approaches

In many cases species are at risk because of habitat degrada-
tion and environmental threats that do not lend themselves
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easily to a strict species-area curve approach. This is espe-
cially true for freshwater and marine biodiversity. In fresh-
water systems, water withdrawals and dewatering of streams
obviously can make it impossible for fish to survive. One
approach is to link water discharge to fish diversity (e.g.,
Oberdorff et al. 1995). Similarly, in the marine environ-
ment extinctions are very hard to observe, and the primary
impact that has actually been measured is a change in the
biomass occupying different trophic levels. Chapter 10
presents a method for relating changes in biomass at trophic
levels to changes in biodiversity. These threat analyses ap-
proaches typically start with a statistical relationship be-
tween some measured stress and a measured response in a
particular taxa (like fish in response to reduced water dis-
charge).

4.5.1.5 Population Viability Analyses

In order to categorize species according to their risk of ex-
tinction, modelers routinely conduct population viability
analyses. These range from simple diffusion approximations
for population fluctuations to detailed stochastic demo-
graphic matrix models. In all cases extinction is primarily a
function of the current population size, environmental vari-
ability, and rate of population growth rate (Morris and Doak
2002). Changes in extinction risk will result if any of these
key factors is altered. To date, most models that attempt to
predict changing extinction risk per species tend to focus
on what happens because species abundance is reduced.
There is no reason, however, that changes in environmental
variability (which is expected to be affected by climate
change) could not be used to project an altered extinction
risk for any given species. In theory, someone could sum
PVA models over many species and then generate predic-
tions about aggregate extinction risks.

4.5.2 Critical Evaluation of Approaches

4.5.2.1 Qualitative Approach

The strengths of the qualitative approach are that it is sim-
ple, tractable, and easy to communicate. It made global bio-
diversity scenarios possible before global species richness
was fully described. The major weaknesses of the approach
are associated with its scale and qualitative nature. The scale
at which the qualitative biodiversity scenarios were run was
very coarse, with only 11 terrestrial units and two freshwa-
ter ecosystem types. The coarse scale resulted in large errors
in driver patterns and also yielded results at a scale that was
too coarse to be used in management and decision-making.
Most decisions about biodiversity occur at finer scales—
from paddocks to nations—and never reach the level of bi-
omes. The second weakness is the qualitative nature of the
exercise that is related with the scale. This type of exercise
may only be doable at a coarse scale, where differences
among biomes are large enough to be captured without
more sophisticated calculations.

4.5.2.2 Correlation to Environmental Variables

In general, correlative approaches offer a reasonable alterna-
tive to mechanistic methods. Their main weaknesses are the
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same as those of any statistical analysis. The results may be
influenced by biases in sampling regime, they rely on large
sample sizes for accurate prediction, and they may fail to
take adequate account of complex system dynamics and
nonlinearity. Correlative approaches also make the assump-
tion that species will occur wherever habitat is favorable,
ignoring the potential for dispersal limitation and other
confounding biotic interactions (such as competition and
predation) unless they are explicitly included in the model.

Ideally, linear models of species richness should be based
on a small number of variables with well-demonstrated rel-
evance to the occurrence of the study taxon. A number of
studies have reported poor out-of-sample prediction, which
can often result from over fitting; a variety of statistical
methods (bootstrapping, jack-knifing, and model averag-
ing) can be used to overcome this problem (Raftery et al.
1997; Fielding and Bell 1997; Hoeting et al. 1999). Several
authors have used the predictive power of correlative meth-
ods to consider the likely implications of climate change for
species distributions and population processes (e.g., Schwartz
et al. 2001; Thomas et al. 2001; Kerr 2001; Peterson et
al. 2001), although a failure to take account of covariance
between climatic variables may result in oversimplification
of the problem (Rogers and Randolph 2000).

A further weakness in correlative approaches is that spe-
cies will not exploit their full potential geographic range if
individuals are unable to reach areas where the habitat is
suitable. Island biogeography (MacArthur and Wilson 1967;
Hubbell 2001) has been a widely used framework for think-
ing about changes in species distributions. Recent studies of
invasive species (e.g., Parker et al. 1999) also shed light on
the dispersal ability of organisms and the ways in which
physical and biological variables interact to change the ex-
tents of species ranges.

4.5.2.3 Species-Area Relationship

One strength of the SAR approach is its simplicity: it is
very straightforward way to explain how the calculation of
biodiversity loss is made. Furthermore, the SAR is an ubiq-
uitous pattern in nature, with more than 150 studies docu-
menting SARs for different taxa and regions (see, e.g., the
review in Lomolino and Weiser 2001). One weakness of
the SAR approach is that it does not distinguish among
species and hence does not tell us where to direct conserva-
tion efforts. Second, it does not predict when the loss of
ecosystem services associated with a species or a group of
species is going to occur, which may be before a species is
locally extirpated or may not occur even after that event.
Finally, the SAR approach accounts only for the impacts of
habitat loss. While habitat loss is the major driver of biodiv-
ersity loss (Sala et al. 2000; Hilton-Taylor 2000), other driv-
ers such as hunting, trade, invasive species, and climate
change are also important. Nevertheless, in the case of cli-
mate change the SAR has been used to predict biodiversity
loss based on predictions of habitat loss induced by climate
(Thomas et al. 2004).

A major assumption of the SAR approach is that no spe-
cies survive outside native habitat. Put another way, instead
of stating that habitat is lost, it is more accurate to say that
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habitat is changed. The actual changes in habitat, even if
from a forest to a plantation, do not correspond to total
habitat degradation. Some species will remain, even as habi-
tat is altered. In Costa Rica, for instance, about 20% of the
bird species are exclusively associated with human-altered
habitats, and the majority of species (about 66%) use both
natural and human-altered habitats (Pereira et al. 2004).
Furthermore, when the SAR is applied to a given region,
it will project only regional extirpations. Global extinctions
will depend on how many of the species going extinct are
endemic to the region being considered. (See Chapter 10
for a thorough discussion of this issue.) Also, the SAR ap-
proach applies only to the native species of a region.

One large uncertainty associated with the SAR projec-
tions of biodiversity loss is the choice of the z-value (see
Equation above). SARs can be classified according to the
type of sampling in three categories: continental, where
nested areas are sampled within a biogeographic unit, and
typical z-values are in the range 0.12–0.18 (Rosenzweig
1995, but see Crawley and Harral 2001); island, where is-
lands of an archipelago or habitat islands such as forest
patches are sampled, and typical z-values are in the range
0.25–0.35 (MacArthur and Wilson 1967; Rosenzweig
1995); and inter-province, where areas belonging to differ-
ent biogeographic provinces are sampled, and z-values clus-
ter around 1 (Rosenzweig 1995). A review of the literature
of SARs in vascular plants (see Chapter 10) suggests that
typical intervals for the z-values can be even wider, and the
mean values may differ from the ranges discussed above. It
has been standard practice to use z-values of island SARs to
estimate biodiversity loss (Pimm et al. 1995; May et al.
1995; Reid 1992), but arguments could be made for using
the z-values of the continental or even the inter-province
SARs, depending on the time scale of interest (Rosenzweig
2001).

4.5.2.4 Threat Analyses Approaches

Models that link threats like reduced water discharge to
reduced diversity are in some sense a special class of correla-
tive models, and hence have the same weaknesses as de-
scribed for correlative approaches. This is a very new
branch of modeling, and it is plagued by highly norepresen-
tative taxonomic treatments. For instance, predictions of
freshwater extinctions or changes in diversity are made only
for fish. With the exception of coral reefs, predictions about
marine diversity are also made only for fish. In fact, the
data on trophic level and biomass comes from fish landed
commercially; hence the relationships are based on har-
vested species.

4.5.2.5 PVA Models

The biggest limitation of population viability analyses mod-
els for predicting changes in biodiversity is that they are
impractical because of their huge appetite for data and spe-
cies-specific analyses. PVA models are best used to examine
specific species. Even when applied to single species, there
is extensive debate about their value because of huge uncer-
tainty that often leads to a probability of extinction between
0 and 1 (Ludwig 1999). In management, PVAs are used for
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comparing relative risks of alternative options, but they do
not lend themselves so well to point estimates of any given
extinction probability.

4.5.3 Research Needs

There is a need for research that examines which estimation
procedures for z-values and also which z-values are most
appropriate for describing biodiversity loss as a consequence
of habitat loss. Retrospective studies (e.g., Pimm and Askins
1995) that analyze past extinctions associated with habitat
loss as well as long-term experimental studies concerning
the effect of habitat manipulations on local species extinc-
tions are needed. Also needed are approaches to validate
diversity models, which includes the generation of suitable
data sets of biodiversity that are publicly available.

A generalization of the SAR to multiple habitats is
needed. Recently, Tjorve (2002) and Pereira and Daily (in
review) have discussed the implications for biodiversity of
changing the proportion of cover of different habitats in a
landscape. However, more empirical and theoretical re-
search is needed to determine how the SAR can be ex-
tended to complex landscapes with several habitats. Open
questions include: Which z values should be used for differ-
ent habitats? How do we estimate species loss caused by
habitat conversion for species that prefer native habitat but
can also survive in the agricultural landscape?

The development of models of biodiversity change that
do not conveniently fit the species-area paradigm is very
much in its infancy. For aquatic systems, for example, cur-
rently available data tend to represent a highly biased taxo-
nomic sample (such as fish, while invertebrates or aquatic
plants are neglected). In most cases the threat-models are
extrapolated well beyond their original data range in order
to obtain global predictions. These extrapolations need
scrutiny. We expect that within 10 years there could be
huge advances in tools for predicting aquatic biodiversity
and how it responds under different scenarios.

There will probably never be ‘‘a biodiversity model’’
that enables us to predict changes of species richness at all
of the geographic and temporal scales or for all ecosystems
and taxa. The multiscale approach of the MA was met by a
combined use of different quantitative and qualitative tools
for estimating the future development of biodiversity in a
hierarchical approach. This approach made it possible for us
to answer such diverse questions as: What will the future
pattern of species diversity of known groups be and what
trends are to be expected in the future? Is there any scenario
for significantly reducing biodiversity loss? How well can
other, easy-to-obtain abiotic data be used to make predic-
tions about biodiversity patterns? Judgment on the most ap-
propriate methods to use should be based on the following
criteria: spatio-temporal resolution, taxa of interest and data
availability, ease of application, and ability to cope with un-
expected events (such as increased extinction risk due to
sudden population decline).

4.6 Forecasting Changes in Phosphorus Cycling
and Impacts on Water Quality
Phosphorus (P) is frequently the limiting nutrient for pri-
mary production in freshwater ecosystems (Schindler 1977)
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and is recognized as a critical nutrient in marine ecosystems
(Van Capellen and Ingall 1994; Tyrell 1999). Excess P input
causes harmful algal blooms (including blooms of toxic spe-
cies) as well as excessive growth of attached algae and mac-
rophytes. Excess plant growth can damage benthic habitats
such as coral reefs. Harmful algal blooms cause deoxygen-
ation and foul odors, fish mortality, and economic losses.
Impacts on human well-being include health problems
caused by toxic algae blooms and waterborne diseases, as
well as loss of aquatic resources. Economic costs derive
from health impacts as well as increased costs of water puri-
fication and impairment of water supply for agriculture, in-
dustry, and municipal consumption (Carpenter et al. 1998;
Postel and Carpenter 1997; Smith 1998). Because of the
role of P in eutrophication and water quality, it was impor-
tant that the MA Scenarios Working Group considered po-
tential future changes in P flow to freshwater and marine
ecosystems.

In this section, we assess the available models for P trans-
port to water bodies, eutrophication, and impact on ecosystem
services. We discuss process-based and export-coefficient
models of P transport and many types of in-lake eutrophica-
tion models, from simple empirical models to more com-
plex ones that include recycling and biotic effects. We also
briefly discuss models that include interactions of policy
with water quality.

4.6.1 Existing Approaches

4.6.1.1 Phosphorus Transport Models

4.6.1.1.1 Process-based models

Before discussing phosphorus models, it is important to un-
derstand how P moves through the environment. P arrives
in surface waters primarily via runoff. P runoff can be dis-
solved in water, which moves on the surface and in subsur-
face flows. More commonly, P is delivered in the form of
soil particles. Most P runoff is absorbed to soil particles and
moves during major storms with heavy erosion (Pionke et
al.1997). Once it enters the aquatic environment, P can be
released in forms available for plant growth. Measures of P
availability used in terrestrial ecology tend to underestimate
the amount of P that can be released after soil is eroded into
aquatic ecosystems (Sharpley et al. 2002).

Process-based models simulate P transport across water-
sheds to surface water. They have been used for small and
large watersheds, in diverse soils and topographies. Such
models are often used to estimate the impacts of different
types of land use and management on P transport. For ex-
ample, several have been used to highlight best manage-
ment practices (Sharpley et al. 2002). Some of these models
are based on or use the Universal Soil Loss Equation, first
developed by Wischmeier (1958).

Some, like AGNPS–Agricultural Nonpoint Pollution
Source (Young et al. 1989), estimate runoff in large water-
sheds (up to 20,000 ha) but can be used to analyze runoff
from individual fields, and the impact of specific best man-
agement practices, within the overall watershed.
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Other process-based models for simulating P transport
include ANSWERS–Areal Nonpoint Source Watershed
Environment Response Simulation (Beasley et al. 1985),
GAMES–Guelph Model for Evaluating Effects of Agricul-
tural Management Systems on Erosion and Sedimentation
(Cook et al. 1985), ARM–Agricultural Runoff Model
(Donnigan et al. 1977), and EPIC–Erosion-Productivity
Impact Calculator (Sharpley and Williams 1990). Recent
developments include models like INCA-P, a dynamic
mass-balance model that investigates transport and retention
of P in the terrestrial and aquatic environments (Wade et al.
2002). These models were largely developed in order to
estimate the benefit or drawback of specific land manage-
ment techniques and estimated P transport at the edges of
agricultural fields.

4.6.1.1.2 Export coefficient models

Export coefficient models are steady-state models used to
estimate P load based on the sum of P loads from various
land types in a watershed (Wade et al. 2001). These models
are generally simple, empirically driven, and often not spa-
tially explicit. The name comes from the fact that each type
of land in the model has associated with it an export coeffi-
cient that is an empirically determined estimate of P runoff
from that type of land. Land may be defined by soil proper-
ties, land use, land management, or some combination of
factors.

A few spatially explicit export coefficient models for P
have been developed, such as those developed by Soranno
et al. (1996), who included distance and routing to the lake,
and Gburek and Sharpley (1998), who routed export to the
stream from source areas in the watershed. These models
tend to be highly data-intensive and are thus limited in their
applicability.

Data generally come from measurements of edge-of-
field P transport and field data such as the physical and
chemical properties of the soil, land use, and land manage-
ment properties. Export coefficient models can be linked to
a GIS to estimate a runoff over a given watershed or water-
shed area. They often require plentiful data for parameter-
ization and calibration (Sharpley et al. 2002).

A few recent export coefficient models have been devel-
oped to model the impact of land use change on P transport
(Wickham et al. 2002). Wickham et al. (2000) use an export
coefficient model to estimate total P transport with one land
use map and then again with another land use map and
compare the difference between the two to understand how
land use change might affect P runoff.

4.6.1.2 Freshwater Eutrophication Models That Predict
Important Ecosystem and Policy-relevant Impacts

4.6.1.2.1 Simple empirical models

The simplest, and in many ways most widely applicable,
models of eutrophication are the empirical relationships be-
tween P input, or loading, to a water body and the biomass
of primary producers in that water body (Rigler and Peters
1995). We will refer to these as simple empirical models for
eutrophication. The general form of SEMEs is
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A � f(P input, covariates, parameters) � �

In this equation, A is a measure of algal abundance such as
cell concentration, chlorophyll a concentration, or primary
production; P input is expressed as a rate or annual load;
covariates (if present) include variates such as lake morpho-
metry or hydrology; and � are errors with a specified proba-
bility distribution (usually normal or lognormal, with
moments estimated from the data). The parameters of the
function f and the distribution of � are fitted by regression
methods.

SEMEs have a long history in limnology. An early and
frequently adopted model was introduced by Vollenweider
(1968). His model predicts chlorophyll concentration from
P input rate, adjusted by simple corrections for water depth
and hydraulic retention time. P input has also been used to
predict other biotic variates, such as biomass of consumers,
in lakes (Håkanson and Peters 1995). Of particular interest
to the MA, P input has been used in conjunction with N:P
ratios to predict concentration of cyanobacteria, an impor-
tant type of toxic algae (Smith 1983; Stow et al. 1997).
Harmful algal blooms are highly variable in space and time
(Hallegraeff 1993; Soranno 1997). In general, predictions of
chlorophyll have lower uncertainties than predictions of the
timing and spatial pattern of harmful algal blooms.

4.6.1.2.2 Recycling and biotic effects models

The wide confidence intervals around predictions of empir-
ical models and the desire to extrapolate beyond the calibra-
tion data have prompted considerable research on more
complicated models of eutrophication. Much of this work
has focused on P recycling from sediments and food web
processes.

P recycling from sediments can cause lakes to have
higher biomass of algae than expected from typical P input–
chlorophyll relationships. P recycling from sediments is
caused by anoxia (which increases solubility of iron-P com-
plexes found in sediments) or turbulent mixing of sediments
into the water. P recycling due to anoxia has been modeled
empirically, using its correlation with other limnological
drivers (Nürnberg 1984, 1995). More mechanistic models
of recycling have also been developed (Tyrrell 1999).

Under conditions of excess P input, a positive feedback
can maintain a quasi-stable eutrophic state. High produc-
tion of algae leads to rapid depletion of oxygen in deeper
water, as decaying algae sink to the bottom. Anoxia pro-
motes recycling of P from sediments, leading to more pro-
duction of algae, thereby creating a self-sustaining feedback.
A model of this phenomenon exists for lakes (Carpenter et
al. 1999b; Ludwig et al. 2003), though for many applica-
tions at least one parameter of the model has a large standard
deviation (Carpenter 2003). This mechanism is exacerbated
by sulfate deposition caused by coal-burning industrial
processes. In anoxic waters or sediments of lakes and reser-
voirs, sulfate reduction leads to formation of iron sulfide,
decreasing the availability of iron to bind P in sediments
(Caraco et al. 1991). Sulfate is abundant in sea salt. A similar
feedback among algal production, anoxic events, and P re-
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cycling has been modeled for marine systems (Van Capellen
and Ingall 1994; Tyrrell 1999).

In shallow lakes or seas, P can be recycled by physical
mixing of sediments by waves or bottom-feeding fishes
(Scheffer et al. 1993; Jeppesen et al. 1998; Scheffer 1998).
Feedbacks among water clarity, macrophytes, and bottom-
feeding fishes result in two quasi-stable states—one with
macrophytes, clear water, and few bottom-feeding fishes
and the other with turbid water, no macrophytes, and abun-
dant bottom-feeders. Models of shallow lakes are well un-
derstood (Scheffer 1998; Scheffer et al. 2001a, 2001b). The
extent to which these models can predict lake dynamics is
currently an area of active research.

Fish predation can change grazer communities and
thereby change chlorophyll concentrations or primary pro-
duction of pelagic systems (Carpenter and Kitchell 1993).
The grazer community affects phytoplankton through di-
rect consumption as well as excretion of P. Examples of
food web impacts on phytoplankton are known from both
lakes and oceans (Carpenter 2003). In lakes, the impact of
grazers on chlorophyll or primary production can often be
predicted from measurements of the body length of crusta-
cean zooplankton (Pace 1984; Carpenter and Kitchell
1993). A simple empirical model of grazer effects substan-
tially reduced the variance of predicted chlorophyll when
the model was applied to a cross-section of North American
lakes (Carpenter 2002).

Mechanistically rich simulation models have been used
to understand or manage eutrophication in many situations
(Chapra 1997; Xu et al. 2002). Such models address a diver-
sity of climatic, biogeochemical, and biological factors that
may affect eutrophication. Although these models have a
number of fundamental similarities, such as the central role
of nutrient supply, they also include a number of site-
specific features (e.g., Bartell et al. 1999; Drago et al. 2001;
Everbecq et al. 2001; Gin et al. 2001; Håkanson and Bou-
lion 2003; Karim et al. 2002; Pei and Wang 2003). Because
of the diversity and site-specificity of this family of models,
it was not possible to recommend one particular mechanis-
tic model for use by the MA.

Recycling and food web dynamics create threshold be-
haviors in the P cycle (Carpenter 2003). For the MA, the
most important thresholds are those that, if crossed, create
self-perpetuating eutrophication of a water body. These
thresholds are difficult to discern before they are crossed
(Carpenter 2003). For example, in a region of Wisconsin in
the United States with generally high water quality, nearly
half of the lakes were judged susceptible to self-perpetuating
eutrophication (Beisner et al. 2003). Extensive regional data
bases and whole-lake experiments that deliberately eutro-
phied three experimental lakes were necessary to make this
calculation. Comparable data are available for few other re-
gions of the world.

At present, validated and generally applicable models for
the prediction of eutrophication thresholds do not exist.
Certain key elements of such models are present in the re-
search summarized here, but these elements have not been
aggregated in a globally applicable modeling framework.
Statistical studies of eutrophication thresholds reveal broad
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confidence intervals, indicating that uncertainties about the
location of thresholds are high (Carpenter 2003).

4.6.1.2.3 Models for interaction of policy and water quality

Some policy-related models have addressed water quality,
eutrophication, or harmful algal blooms. For example, the
global scenario model PoleStar (Raskin et al. 1999) presents
water quality indicators. The water quality module of Pole-
Star is relatively simple (and therefore readily testable with
data where these exist) and transparent and has been used
in a number of global scenario exercises.

For single lakes, stochastic dynamic optimization models
have been used to determine optimal P input in the pres-
ence of thresholds and uncertainty about parameters (Car-
penter et al. 1999b; Ludwig et al. 2003). Variants of these
models have been used to study the possibility of estimating
the thresholds for eutrophication by active adaptive man-
agement (Carpenter 2003; Peterson et al. 2003). The gen-
eral finding is that someone is unlikely to learn the
threshold without crossing it and thereby eutrophying the
lake (Carpenter 2003).

Various other models have been used to study eco-
nomic, social, or political processes that interact with eco-
system dynamics to determine ecosystem services derived
from fresh water (Brock and de Zeeuw 2002; Guneralp and
Barlas 2003; Janssen 2001; Scheffer et al. 2003; Tundisi and
Matsumura-Tundisi 2003). These include comparisons of
policies that maximize a measure of expected net utility
over long time horizons as well as game theory models of
stakeholder interactions. Other models have considered the
dynamics of uncertainty about thresholds as managers at-
tempt to maximize expected net utility for lake ecosystem
services (Carpenter et al. 1999a; Janssen and Carpenter
1999; Carpenter 2003; Peterson et al. 2003). Extensions of
such models in the form of computer games can be used
to help stakeholders understand the vulnerabilities of water
quality and form expectations that are consistent with sus-
tainable use of fresh waters (Carpenter et al. 1999b; Pe-
terson et al. 2003).

4.6.2 Critical Evaluation of Approaches

4.6.2.1 Phosphorus Transport Models

Phosphorus transport models can provide reasonably accu-
rate estimates of P transport, especially in small, agricultural
watersheds, for which most of them were developed. A re-
cent review by Sharpley et al. (2002) provides an excellent
overview of data and relationships available to update P
transport models.

Applications of transport models are often limited by
lack of data available for the detailed parameterization that
is necessary. The more realistic these models attempt to be
in terms of mechanisms of P transport, the more data they
require. Predicting P transport may require highly accurate
land use maps, digital elevation models, and data about fer-
tilizer and manure use, including the P content of the ma-
nure. Increasing mechanistic detail, watershed size, or
spatial resolution can quickly cause run times to become
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extremely long and the models themselves to be difficult to
apply (Sharpley et al. 2002).

In addition, many models of P transport are designed to
simulate P transport only in small-scale agricultural systems
(Gburek and Sharpley 1998). The accuracy of scaling-up is
dependent on how processes at finer scales relate to proc-
esses that govern P transport at larger, watershed scales
(Sharpley et al. 2002). These models were unlikely to be
useful for quantifying distinctions in the MA scenarios at
global scales due to difficulties in generalizing across differ-
ences in the processes that drive eutrophication around the
world.

Most P transport models are not linked to models that
simulate impact of P on the aquatic ecology (Wade et al.
2002). Linking these two models in order to understand the
impact of land use and management strategies on aquatic
ecosystems will be an important next step for researchers
and watershed managers.

4.6.2.2 Freshwater Eutrophication Models

Empirical eutrophication models of the type introduced by
Vollenweider (1968) could provide a robust foundation for
eutrophication estimates. Advantages of the empirical mod-
els include a long history of usage leading to considerable
information about strength and limitations of the models,
simple transparent mathematical structure, and the possibil-
ity of rigorous uncertainty analyses. Limitations of empirical
models include uncertainty of extrapolation beyond the
conditions of the data used to fit the regressions and the
rather wide confidence intervals of prediction. Cole et al.
(1991) and Pace (2001) discuss the strengths and limitations
of empirical models in ecosystem science.

The simple empirical models omit a number of impor-
tant effects. For the quantification of the global scenarios of
MA, however, it was impractical to obtain data on these
other factors at the necessary scales.

Recycling and food web effects are two important omis-
sions from the simple P input models to predict chlorophyll.
For the purposes of MA, these omissions probably caused
simple empirical models to underestimate chlorophyll and
the harmful effects of eutrophication under conditions
when P recycling was likely to be high. These include situa-
tions in which there has been a long history of high P input,
causing sediments to become enriched with P; water tem-
peratures were warm (Nürnberg 1995); or ecosystems have
received high inputs of sulfate (such as emissions from burn-
ing coal). Overfishing of top trophic levels may cause cas-
cading effects that exacerbate eutrophication. In summary,
then, the simple P input models could underestimate the
severity of eutrophication in warmer regions of the world
or under conditions of chronic heavy loading, climate
warming, or food web transformation by fishing. These are
the future conditions that needed to be addressed in some
MA scenarios.

In situations where extensive data on lake morphometry,
biogeochemistry, hydrodynamics, and food web structure
are available, it may be advisable to use more detailed mod-
els to predict eutrophication. Pragmatically speaking, how-
ever, the current global data bases are not likely to provide
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enough detail to warrant one of these more sophisticated
modeling approaches.

4.6.3 Research Needs

Many of the P transport models presented here require a
large amount of data to be parameterized and calibrated for
the particular watershed or region in question. Yet the un-
derlying principles are similar, and it should be possible to
develop more generally applicable P loading models. Im-
proved spatial data sets for soils and topography (digital ele-
vation maps) will also advance our ability to predict P loads.
Better information is needed about how soil P concentra-
tions and pools interact with land use and change in land
use to affect P transport. Because P transport is affected by
soil type, vegetation type, climate, and many other local
variables, it has been difficult for researchers to generalize
about P transport while attempting to model transport in a
specific watershed. Sharpley et al. (2002) present an over-
view of the generalizations for which data exist.

While eutrophication may appear to be a regional prob-
lem, it is related to global changes that people are making to
the P cycle through mining and widespread use of fertilizers
(Bennett et al. 2001). Eutrophication of a given lake is not
independent of eutrophication happening elsewhere; it is a
global pattern. Developing simple large-scale or even global
models that can be used to indicate P use, transport, and
eutrophication based on land use should be a priority.

Developing models to understand the impact of land use
change on P transport is also important. At present, the
available models assume that the process of land use change
does not release P (Wickham et al. 2000, 2002). That is,
they figure that if agriculture exports equal X g P/ha and
urban exports equal Y g P/ha, converting agricultural area
to urban decreases P export by X-Y g P/ha. However, sev-
eral studies have indicated that the period of transition to
urbanized use is a critical period of high P transport (Kauf-
man 2000; Owens et al. 2000). Models that address the im-
pact of this period of transition are important. Development
of these models will require land use change data as well as
a better quantitative data about the impact of periods of land
use transition on P transport.

A priority for freshwater eutrophication models is devel-
oping a better understanding and predictive capability for
internal recycling and sequestration mechanisms (including
those mediated by organisms, especially invasive species).
The interaction of internal recycling and sequestration with
loading processes will be a critical aspect of this understand-
ing. Although some models have been developed for integ-
rating management with transport and eutrophication
models, further development of models that integrate
human interventions (including management actions) to
water quality, aquatic ecosystem services, and human well-
being is needed.

4.7 Forecasting Changes in the Nitrogen Cycle
and Their Consequences
The nitrogen (N) cycle is a key regulator of the Earth
system, linking terrestrial, marine, photochemical, and in-
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dustrial processes. Biodiversity, carbon storage, and atmo-
spheric chemistry are all regulated in part by the cycling of
reactive nitrogen compounds. Over the last century and a
half, expansion and intensification of agriculture together
with fossil fuel combustion have led to an acceleration of
natural microbial N cycling and have more than doubled N
inputs to terrestrial ecosystems. Measurable results of these
perturbations include a 17% increase in the atmospheric
concentration of nitrous oxide (N2O), a potent greenhouse
gas, and a doubling of dissolved nitrogen export from rivers
to coastal zones and of natural reactive nitrogen emissions
to the atmosphere (Galloway et al. 2004). Since many of
the effects of human N cycle perturbations are difficult to
measure directly, ecosystem models play an important role
in assessing and quantifying past and present impacts and in
making future predictions.

4.7.1 Existing Approaches

4.7.1.1 Transport Models

4.7.1.1.1 Process-based models of the terrestrial nitrogen cycle

A number of models have been developed to simulate ni-
trogen biogeochemistry. The simulation of net primary
productivity is central to all of these models. NPP is either
derived from satellite normalized difference vegetation
index data (Potter et al. 1996; Asner et al. 2001) or calcu-
lated as a function of climatological inputs like temperature,
solar insolation, and precipitation (which drives the soil
water balance component of the models). In terrestrial
models that simulate the coupled carbon-nitrogen cycle, in-
cluding CENTURY, TEM, BIOME-BGC, pNET, and
the NCAR CLM2, the calculation of NPP is modulated by
nutrient limitation—that is, soil nitrogen availability (Mc-
Guire et al. 1992; Aber et al. 1997; White et al. 2000; Par-
ton et al. 2001; Bonan et al. 2002).

The availability of mineral nitrogen in the soil is con-
trolled at short time scales by soil temperature and moisture
conditions, at intermediate time scales by the supply of new
organic matter from plant litter and decomposition of exist-
ing organic matter, and at longer time scales by changes in
litter quality due to changing plant community composition
and soil texture. In the absence of anthropogenic inputs, on
very long time scales (decades to centuries), the composi-
tion of natural plant communities depends on the balance
between accumulation and loss of fixed nitrogen, with ac-
cumulation from N deposition and from the symbiotic and
asymbiotic fixation of atmospheric N2 and with loss due to
leaching and transport in outflow, microbial dentrification,
and denitrification during biomass burning.

The different processes that determine soil N availability
are simulated by current models with varying degrees of
sophistication. Many terrestrial models have multiple com-
partments describing woody and herbaceous litter and rap-
idly and slowly degrading soil organic matter pools (Parton
et al. 1987). These models contain detailed algorithms for
soil organic matter dynamics that include competition be-
tween plants and soil biota for soil mineral nitrogen re-
sources and nitrogen constraints for carbon assimilation and
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allocation to different plant tissues. Some models, like the
NCAR CLM2, are beginning to incorporate dynamic veg-
etation algorithms, with explicit competition between mul-
tiple plant functional types for common soil water and
mineral nitrogen resources, which allows for evolution of
plant communities in the face of human perturbations and
global change (Bonan et al. 2002).

In contrast to these relatively sophisticated algorithms,
other key processes like N2 fixation are still parameterized
rather crudely—for example, as simple functions of precipi-
tation or based on biome type (Parton et al. 1987). Further-
more, a recent assessment of terrestrial N2 fixation, based on
a compilation of measurements from different ecosystems,
revealed a large uncertainty (a range of 100–300 Tg N/yr)
in the global terrestrial fixation rate (Cleveland et al. 1999).

4.7.1.1.2 Modeling N export in rivers

A major consequence of N cycle perturbation is the in-
creased transport of leached N in rivers to coastal regions.
Increased N loading in coastal areas can stimulate harmful
algal blooms and associated heavy loads of decaying organic
matter, which can lead to hypoxic or anoxic conditions.
This phenomenon, known as eutrophication, is often ac-
companied by changes in plant and algal species composi-
tion, fish death, coral reef degradation, and decreases in
species diversity (NRC 2000). In extreme cases, such as the
outlet of the Mississippi River into the Gulf of Mexico,
eutrophication can turn coastal waters into ‘‘dead zones’’
(Rabalais et al. 2002). Increased N delivery to coastal areas
also can lead to enhanced microbial production of nitrogen
trace gases, including NH3 and the greenhouse gas N2O
(Naqvi et al. 2000).

In recent years, a number of studies have attempted to
quantify and identify the origin of N exported in rivers to
coastal regions. These studies generally have used empirical
models to relate N export in rivers to various independent
variables, including basin runoff , land cover type, soil tex-
ture, human population, and N inputs from fertilizer, sew-
age, and atmospheric deposition (Seitzinger and Kroeze
1998; Caraco and Cole 1999; Lewis et al. 1999; Alexander
et al. 2000; Lewis 2002; R. A. Smith et al. 2003; S. V.
Smith et al. 2003). The statistical models range from simple
linear regressions to complex nonlinear matrix inversions.

Recently, Donner et al. (2002) published the first process-
based simulation of N transport in rivers on a regional scale.
Their study coupled water runoff rates from a carbon-only
terrestrial ecosystem model to prescribed N leaching fluxes
and a hydrological routing model for the Mississippi River
basin. The study did not account for increases in fertilizer
and other anthropogenic N inputs over time, since its main
purpose was to isolate the effect of changes in hydrology
(that is, increased runoff ) on N export in the Mississippi
River from 1955 to 1996.

Although the terrestrial ecosystem model used in Don-
ner et al. (2002) was a carbon-only model, most of the ter-
restrial coupled carbon-nitrogen biogeochemistry models
just discussed explicitly calculate NO3-leaching rates as well
as water runoff rates. These models commonly calculate an
N leaching term at each individual grid cell, which goes
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into a global accounting pool but otherwise effectively
leaves the grid cell and disappears from the model. Future
improvements in N cycle modeling will involve coupling
terrestrial N leaching rates to hydrological and river routing
models, permitting evaluation of downstream and long-
term impacts of N leaching.

4.7.1.1.3 Ocean and coastal nitrogen biogeochemistry models

Human N cycle perturbations have impacts not only on
terrestrial ecosystems but also on coastal regions and, poten-
tially, on the open ocean. The transport of leached N in
rivers to coastal regions and its stimulation of coastal eutro-
phication have already been described. In addition, a sig-
nificant fraction of the reactive NH3 and NOx volatilized
from soil and produced by fossil fuel combustion eventually
deposits on coastal or open ocean waters (Holland et al.
1997; Paerl 2002). Global change may also have profound
impacts on oceanic N cycling through other physical and
chemical mechanisms, such as decreases in ocean pH associ-
ated with increasing atmospheric CO2 and enhancement of
thermal stratification due to global warming. The latter may
increase water-column O2 depletion, thus promoting deni-
trification (Altabet et al. 1995).

Three-dimensional ocean biogeochemistry-circulation
models have historically not been well designed to simulate
the impact of anthropogenic N inputs on the oceanic nitro-
gen cycle. Most early ocean carbon models were con-
structed around phosphorus as the limiting nutrient, in large
part to avoid the complications of simulating biological
sources and sinks of oceanic fixed N. Furthermore, rather
than being computed mechanistically, oceanic primary pro-
duction and associated organic matter remineralization
were estimated as the fluxes needed to produce dissolved
phosphate concentrations that match observed climatolog-
ies (Najjar and Orr 1998).

An additional complication is that Fe rather than N ap-
pears to be the limiting nutrient in high nitrate–low chloro-
phyll regions of the sub-tropical North Pacific and the
Southern Ocean, where enhancements in primary produc-
tion could lead to significant increases in oceanic sequestra-
tion of fossil CO2. As a result, most recent model and
empirical studies of oceanic nutrient limitation have focused
on Fe (Fuhrman and Capone 1991; Moore et al. 2002b; Jin
et al. 2002). Some of these studies have predicted that Fe
fertilization may stimulate oceanic primary production and
accompanying remineralization and nitrification, with a re-
sulting increase in oceanic N2O production. The resulting
increase in atmospheric N2O could offset or even outweigh
the gains in greenhouse gas reduction associated with CO2

sequestration. However, a better understanding of oceanic
N2O production and an improvement in its parameteriza-
tion in ocean models are needed before such simulations
can be fully credible.

As in terrestrial ecosystems, the importance of oceanic
biological N2 fixation is not well understood. Current esti-
mates of oceanic N2 fixation range over an order of magni-
tude (Gruber and Sarmiento 1997; Codispoti et al. 2001).
The rate of oceanic denitrification is also uncertain, al-
though current global estimates are somewhat better con-
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strained, thanks to geochemical tracer studies (analyses
based on observed nitrate:phosphate ratios) (Howell et al.
1997; Deutsch et al. 2001). The balance between oceanic
N2 fixation and denitrification, together with riverine N
inputs, ultimately determines the availability of oceanic
fixed N to primary producers and has been hypothesized in
simple box model studies to regulate atmospheric CO2 lev-
els on millennial time scales (Falkowski 1997). Progress is
being made in reconciling estimates of ocean N2 fixation
and denitrification derived from biological extrapolations
versus geochemical tracers, thereby providing improved
constraints on these important N cycle fluxes (Hansell et al.
2004).

Other promising developments in coastal and oceanic N
cycle modeling include the development of regional ap-
proaches to estuarine and coastal nutrient biogeochemistry,
which involve embedding higher resolution regional sub-
modules and/or off-line regional and global compartment
simulations and databases (Jickells 2002; Mackenzie et al.
1998). In addition, open ocean ecosystem models that
move away from climatological ‘‘nutrient-restoring’’ ap-
proaches and toward more process-based simulations are
under development. Such models include multinutrient
(NO3, NH4, PO4, SiO3, Fe) limitation and explicitly resolve
community structure (picoplankton, diatoms, calcifiers, di-
azotrophs) in the upper ocean (Moore et al. 2002a, 2002b;
Le Fevre et al. 2003).

4.7.1.2 Models Emphasizing Feedback between Nitrogen and
Key Ecosystem Processes

4.7.1.2.1 Modeling N regulation of NPP

Models such as the Terrestrial Ecosystem Model and Biome
BGC have examined the influence of vegetation C:N ratio,
and its consequent feedbacks on soil N availability, in regu-
lating NPP. These models have demonstrated why temper-
ate forest ecosystems, which have large, carbon-rich woody
vegetation fractions and wide C:N leaf ratios, tend to be
chronically N-limited (McGuire et al. 1992; White et al.
2000). In contrast, humid and dry tropical forests, which
contain N-rich vegetation, are more likely to be limited
by phosphorus (Vitousek 1994). The TEM model has also
demonstrated the importance of considering N availability
in predicting how climate change will affect NPP (Rastetter
et al. 1992). Models that consider carbon biogeochemistry
alone tend to predict an increase in soil respiration at war-
mer temperatures and therefore net CO2 loss to the atmo-
sphere from soil organic carbon. However, models that
consider coupled carbon-nitrogen dynamics predict an in-
crease in soil N mineralization rates and therefore soil N
availability that can help increase NPP and thus offset soil
carbon losses.

4.7.1.2.2 Modeling N trace gas emissions from terrestrial ecosystems

The ‘‘leaky pipe’’ model of Firestone and Davidson (1989)
provides the conceptual framework for estimating microbial
NOx, N2O, and N2 emissions from soils. Soil gas diffusivity,
a function of soil type and soil water content, regulates the
partitioning of N trace gas in this conceptual model. Low
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soil gas diffusivity favors the emission of N2 over N2O and
N2O over NOx.

The leaky pipe model has been incorporated into some
process-based model algorithms. For example, the CASA
model estimates N trace gas emissions as a fixed fraction
(say, 1–2%) of the rate of soil N mineralization, with a soil-
moisture dependent partitioning between NOx and N2O
(Potter et al. 1996). The N gas sub-model of CENTURY
uses calculated soil water content, temperature, and micro-
bial N cycling rates to simulate daily N2, N2O, and NOx

emissions from nitrification and denitrification. A daily time
step is used because this degree of resolution is needed to
reproduce the short-term events that are often responsible
for the majority of N gas emissions from soils (Parton et al.
2001). The daily time step is also more appropriate to the
needed coupling to atmospheric chemistry transport models.

NH3 emissions are largely associated with volatilization
from livestock manure and ammonium fertilizers and are
equal to or exceed NOx emissions on a global scale. Model-
ing of NH3 emissions is generally based on simple empirical
regression models (which are also used to estimate NOx and
N2O losses from fertilizer) (Bouwman et al. 2002). Alterna-
tively, some process-based models like CENTURY esti-
mate immediate NH3 volatilization losses as a product of
the livestock manure or fertilizer input and a soil texture-
dependent emission coefficient.

Soil N trace gas models have been successfully evaluated
at specific test sites (Parton et al. 2001), although the extrap-
olation of model results to the regional and global scales is
still highly uncertain. An additional shortcoming of current
trace gas emission models is that they do not track the atmo-
spheric transport, chemical transformation, and deposition
of NH3 and NOx, and they thus neglect additional emissions
and other effects that may occur downwind.

4.7.1.2.3 Feedbacks between N fluxes and ecosystem response

Much of the anthropogenic NOx and NHx emitted to the
atmosphere as a result of agriculture, fossil fuel combustion,
and other human activities deposits close to its point origin.
However, a portion may be transported long distances,
crossing national boundaries and even oceans before depos-
iting. The lifetime of NOx and NHx in the atmosphere is
short (hours to days), but these reactive species can be trans-
formed to longer-lived species such as HNO3 and PAN or
may simply escape the boundary layer and be rapidly trans-
ported in strong upper tropospheric winds.

Long-distance transport of NHx and NOy can have pro-
found impacts on downwind ecosystems. N deposition on
formerly pristine natural ecosystem, such as N-limited
grasslands, forests, and aquatic systems, in some cases can
stimulate productivity, leading to increased carbon uptake
and storage (Galloway et al. 1995; Holland et al. 1997). In
other cases, excessive N deposition can cause acidification,
forest decline, a decrease in plant species diversity, declining
production, and C storage and accelerated N losses (Gallo-
way et al. 1995; Vitousek et al. 1997; Aber et al. 1998). N
deposition onto formerly pristine areas can also alter the
emission and uptake of other trace species. For example, N
deposition can lead to increased N2O emissions (Mosier et
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al. 1998) and decreased soil consumption of atmospheric
CH4, which is also important greenhouse gas. Both in-
creased N2O emissions and decreased CH4 consumption
contribute to increased radiative heating of Earth’s atmo-
sphere.

Northern temperate forest ecosystems, which are often
located downwind from centers of fossil fuel combustion,
have seen the greatest changes in N inputs from the atmo-
sphere and have been the focus of most terrestrial biogeo-
chemical modeling studies. Models have predicted an initial
stimulation of NPP in these generally N-limited ecosys-
tems, followed in some cases by eventual N saturation,
which is characterized by increased nitrate leaching rates
and ultimately declining forest productivity (Aber et al.
1997). The TerraFlux model has been applied to biomes
other than temperate forests, notably semiarid and tropical
regions, where much of the future growth in atmospheric
N deposition is projected to occur. These ecosystems may
respond to excess N in markedly different ways than tem-
perate forests and may be more likely to suffer deleterious
effects. TerraFlux results suggest that N-rich tropical forests
may have reduced productivity following excess N deposi-
tion, associated with increased leaching of NO3 and the re-
lated loss of important, potentially nutrient-limiting cations
like Ca�2, Mg�2 (Asner et al. 2001). However, Terra-
Flux predicts increases in productivity in semiarid systems
following N input if water availability is sufficient and water
losses are moderate.

4.7.2 Critical Evaluation of Approaches

One of the major weaknesses in current N cycle models
is that they fail to account for the significant fraction of
anthropogenic N inputs to terrestrial ecosystems that is de-
nitrified (lost to gaseous N2 or N2O), reassimilated into bio-
mass, or stored within groundwater or wetlands before
reaching rivers. Detailed N budget studies in individual wa-
tersheds have found that only approximately 15–25% of N
fertilizer and other inputs to watersheds ends up in rivers
(Howarth et al. 1996; Caraco and Cole 1999). Typically,
�40% of N inputs to watersheds cannot be accounted for
(Howarth et al. 1996). This missing N is assumed to be
denitrified or stored in the landscape. A relatively smaller
fraction of N inputs (�10%) is observed to be denitrified
within rivers. Improved accounting for N losses that occur
in between the soil leaching and coastal delivery stages is
necessary for a credible simulation of the impact of human
N cycle perturbations in a comprehensive Earth System
model.

4.7.3 Research Needs

Addressing the changing nitrogen cycle and ecosystem ser-
vices requires a variety of models at a range of temporal and
spatial scales, from local to global. One of the clear gaps
in our knowledge is in modeling the dynamics of coupled
systems, in which terrestrial and atmospheric systems inter-
act with economic trends or cycles. Coupled models, in-
cluding coupling among the biogeochemical cycles, will
need to be improved so that they can anticipate the cross-
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ings of thresholds that yield entirely new ecosystem states.
More specifically, we must move toward an integrated
model of the terrestrial, aquatic, and atmospheric compo-
nents of the nitrogen cycle, which encompasses the com-
plex feedback-response relationships and key nonlinearities
of the cycle. Such a whole Earth system model should in-
clude terrestrial biogeochemistry models coupled with
atmospheric chemistry/dynamics models, river transport
models, and coastal and open ocean biogeochemistry/circu-
lation models.

4.8 Forecasting Fish Populations and Harvest
The goal of fisheries assessment is to predict the conse-
quences of fishing and other environmental interventions
and, on that basis, evaluate how different management
schemes fare at achieving various management goals. Fore-
casting the state and harvest of exploited populations and
communities is thus central to fishery science.

There are two broad approaches that can be used to
forecast fisheries population and harvest. On the one hand,
there are short-term forecasts aimed at predicting the size of
the exploitable stock for the upcoming fishing season in
order to implement a predetermined feedback harvest rule.
In this case, the forecast is part of the tactic used to define
regulatory measures for the fishing season, such as the total
allowable catch or the number of allowable effort units.
This type of forecast is critical for fisheries based on short-
lived or semelparous species (species that reproduce once
and then die), where the bulk or all of the annual catch is
made up of new recruits.

Mid- and long-term forecasts of populations, on the
other hand, are used in policy design to examine likely con-
sequences of different management options and thus guide
strategic decision-making. In contrast to short-term tactical
forecasts, mid- and long-term forecasts are not meant to
actually predict the future of the system under exploitation;
rather, they attempt to represent a full range of scenarios
that are deemed possible based on historical experience. Be-
cause our ability to actually predict the responses of natural
systems to harvest is admittedly limited, the emphasis in
policy design is on feedback and robustness of performance
across scenarios. Mid- and long-term forecasts aimed at
guiding general management approaches are difficult be-
cause they require more information than the most recent
harvest rates and data on catch per unit of effort, but it is
not clear which of many possible auxiliary data will be most
useful or how much history to consider.

4.8.1 Existing Approaches

The basic approach to fisheries forecasting has three com-
ponents: a mathematical model used to describe the dynam-
ics of the system under study as it is impacted by fishing, an
approach used to condition the model on available informa-
tion, and numerical tools used to implement forecasts under
various management regimes.

4.8.1.1 Single-Species Approaches

Fisheries assessment and management have been dominated
by single-species approaches aimed at controlling fishing
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impacts on unitary stocks by considering them in isolation
from the ecosystem of which they are part. As a result,
quantitative methods used for fisheries forecasting and pol-
icy evaluation have emphasized single-species modeling.

4.8.1.1.1 Models

Models used to represent single-stock dynamics range
widely in complexity. The simplest models correspond to
biomass-aggregated stock-production models, such as the
Schaefer or Pella Tomlinson models (Quinn and Deriso
1999), which specify production as a simple nonlinear func-
tion of aggregate stock biomass. Surplus production is zero
when the stock is at carrying capacity, and it increases to
some maximum at some intermediate stock size. An in-
crease in realism relative to simple stock-production models
is achieved in the so-called delay-difference models (Deriso
1980; Quinn and Deriso 1999) by explicitly modeling the
separate contributions of growth and births (actually re-
cruitment of new-year classes to the exploited stock) to
stock production. In these models, the stock is represented
by the aggregate biomass of the exploited, mature compo-
nent, animals recruit to the stock at some age r, and annual
recruitment is a stochastic function of the mature biomass
r years earlier. Generalized versions of this model include
equations to predict the changes in size composition of the
exploited stock (Hilborn and Walters 1992).

The models most widely used for fisheries forecasting
are substantially more complex, including a representation
of the age and size structure of the stock as well as age/size-
specific fishing mortalities. As in delay-difference models,
stochastic, density-dependent stock-recruitment relation-
ships of various types are used to generate recruitment as a
function of mature biomass. The standard Virtual Popula-
tion Analysis and statistical catch-at-age models (Hilborn
and Walters 1992; Quinn and Deriso 1999) used commonly
for fish stock assessment and forecasting belong in this class.
Finally, even more complex are models that incorporate
spatial structure in addition to age or size structure, such
as MULTIFAN CL (Fournier et al. 1998; Hampton and
Fournier 2001). Each increase in realism is achieved by an
increase in the number of parameters. For example, while a
single fishing mortality rate per year is used in stock-
production and delay-difference models, a vector of age/
size-specific mortality parameters per year is used in stan-
dard age/size-structured models.

Forward projections constructed with these models al-
ways include stochasticity in at least some of the key proc-
esses. Recruitment variability induced by environmental
forces is usually the dominant source. Typically, this vari-
ability is captured using a probabilistic distribution (such as
log-normal with independent or autocorrelated random-
year effects) as an empirical descriptor without attempting
to model the actual environmental factors and processes un-
derlying the variability. The inclusion of regime shifts in
some of the scenarios (e.g., MacCall 2002; Parma 2002a,
2002b) is becoming more common, as empirical evidence
is gained in their support (Francis and Hare 1994, 1998).
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4.8.1.1.2 Conditioning approaches

Whichever the structure of the population model, its pa-
rameters are estimated by fitting time series of data on the
stock and its fishery or fisheries, often making use of other
sources of relevant information, such as information ‘‘bor-
rowed’’ from other similar stocks. Fishery models are con-
ditioned using formal statistical methods based on maximum
likelihood or, increasingly, Bayesian techniques (Hilborn
and Mangel 1997; Punt and Hilborn 1997, 2002). Maxi-
mum likelihood methods aim at providing best point esti-
mates of abundance and fishing mortality rates over time
and their associated estimation error. By contrast, Bayesian
methods are used to derive joint probability posterior distri-
butions of model parameters (and functions of them), con-
ditioned on all observations and prior information.

Models are fitted to different types of data, depending
on model complexity. Most critical for the estimation of the
level of stock depletion is the availability of indices of stock
abundance. These are derived from research surveys or
commercial catch per unit of effort. Tagging data can also
be used to provide information on abundance or exploita-
tion rates. In addition, age/size-structured models use infor-
mation on the age/size composition of the commercial and
survey catches to help estimate trends in year-class strength.
All these different sources of information are generally ana-
lyzed using an integrated statistical approach, where the
likelihood function has several components, one for each
type of data, with each based on a probability model
deemed appropriate for the data in question. When estima-
tion is done using Bayesian methods, prior information
other than hard data may also be incorporated (e.g., McAl-
lister et al. 2001).

Advances in computer technology and development of
efficient methods of nonlinear estimation (such as use of
automatic differentiation in AD Model Builder; available at
www.otter-rsch.com/admodel.htm) have made it possible
to build very complex models that incorporate process
variability in many parameters assumed to be constant in
simpler models. For example, fishing catchability and selec-
tivity may be assumed to vary over time according to some
specified random process. While in the past, estimation was
done assuming that either all the noise was due to measure-
ment error or process error, the new generation of fishery
models incorporate both process and measurement error in
the estimation.

4.8.1.1.3 Numerical tools

Monte Carlo techniques are used to simulate future stock
trajectories incorporating different sources of uncertainty,
as discussed below. Bayesian Markov Chain Monte Carlo
methods (Punt and Hilborn 1997, 2002) are increasingly
used to approximate posterior distributions of model pa-
rameters and then sample from them to project populations
under various candidate fishing policies (e.g., Patterson
1999; Parma 2002a, 2002b).

4.8.1.2 Multispecies Approaches

Concerns about the impacts of fisheries on non-target spe-
cies, habitats, and marine communities have increased over
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the last decade, leading to strong pressure to move from
single-species management to ecosystem management. This
has encouraged further developments of ecosystem models,
which are needed to address the type of questions now
being posed to fisheries assessment scientists.

4.8.1.2.1 Generalizations of single-species models to include features
of multispecies systems

The simplest way in which multispecies effects have been
incorporated into single-species fishery models is by adding
mortality terms to represent the effects of predation on a
target species. The dynamics of the predator is not explicitly
modeled but instead is used as a driving variable in model-
ing the dynamics of the target species. Walters et al. (1986),
for example, modeled the stock-recruitment relationship of
Pacific herring (Clupea harengus) as affected by the abun-
dance of its main predator, Pacific cod (Gadus macrocepha-
lus). Similar models have been developed for pollock
(Theragra calcograma) in the eastern Bering Sea (Livingston
and Methot 1998) to assess the influence of predation and
climate effects on recruitment. Also, Punt and Butterworth
(1995) used a three-species model to evaluate the impact of
culling the predator fur seals (Arctocephalus pusillus pusillus)
on the abundance and catches of the Cape hakes Merluccius
capensis and M. paradoxus. They considered this to be the
‘‘minimal realistic model’’ needed to examine their ques-
tion and emphasized that great care needs to be taken when
designing such models to ensure that all the important pred-
ator-prey interactions are incorporated.

A coarse approach for applying single-species models to
multispecies systems are the so-called aggregated produc-
tion models (Hilborn and Walters 1992), which simply
apply stock-production models (biomass logistic models
with harvest) to aggregates of species. These models have
been tuned to time series of catch rate and fishing effort.
Ralston and Polovina (1982) found that in several tropical
fisheries, trends in catch rate and yield for mixed-species
assemblages were consistent, while results from production
models applied to single-species were erratic.

4.8.1.2.2 Multispecies ‘‘top-down’’ models based on the mass action
principle

Most of the early multispecies fishery models rely on the
mass action principle to represent predator-prey interac-
tions (Walters and Martell in review). Under this principle,
the number of encounters between species is proportional
to the product of their densities. Predation rates, whether
or not they are affected by predator satiation and handling
time (so-called type II functional response by predators), are
directly predicted from such encounter rates. These models
generally predict very strong ‘‘top-down’’ control of abun-
dances by predators.

The simplest models based on the mass-action principle
are generalizations of single-species stock-production mod-
els. They depict the biomass dynamics of multiple species
using logistic models linked by Lotka-Volterra predator-
prey equations (Larkin and Gazey 1982).

A second approach is multispecies virtual population
analysis (Sparre 1991), a detailed age-structured model with
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age-specific harvest and predation rates, originated in the
North Sea model of Andersen and Ursin (1977). MSVPA
focuses on the interactions between commercially exploited
fish stocks for which catch-at-age data are available. It as-
sumes that individual food intake and growth are constant,
and it uses data on stomach contents of all modeled species
to estimate prey suitabilities. Historical trends in abundance
are estimated from historical catches. A forecasting version
of MSVPA, MSFOR, is being applied to the analysis of
exploited ecosystems of the North Sea (Rice et al. 1991;
Vinther et al. 2002) and eastern Bering Sea (Jurado-Molina
and Livingston 2002).

4.8.1.2.3 Mass balance multispecies approaches

While all the previous approaches are conditioned on past
data on the dynamic states of the populations represented,
mass-balance methods are founded on a static description
of the ecosystem, represented by biomasses aggregated into
ecologically functional groups. The basic idea behind the
mass-balance assumption is that for the collection of func-
tional groups considered, production ought to be balanced
by predation, harvest, migration, and biomass change. The
most widely used mass-balance model is Ecopath, which is
based on static flow models (Polovina 1984; Christensen
and Pauly 1992), defined by a series of simultaneous linear
equations that represent trophic interactions and fishing.
The essential parameters required for each functional group
are generally the same as those of other multispecies mod-
els—namely biomass, production rate, consumption rate,
diet composition, and fisheries catch. One extra parameter
per group controls the fraction of the production that is
accounted for in the model. The diet composition matrix
plus four of the five group-specific parameters need to be
‘‘known,’’ and the mass-balance equations are solved for
the remaining parameters.

Unlike MSVPA, Ecopath uses data on the production/
biomass ratio as input (Christensen and Walters 2000). Eco-
path does not require a representation of individual species
or their age structure. Another difference between the two
approaches is that while MSVPA considers the subset of
commercially important species and their key preys and
predators, Ecopath attempts to portray ecosystem-wide dy-
namics, including primary production.

Ecosim is a dynamic extension of Ecopath that simulates
time trajectories of the different functional groups modeled
and thus can be used to examine influences on ecosystem
dynamics resulting from any given harvest policy (Walters
et al. 1997). Ecosim replaces the static biomass flow of Eco-
path by a system of differential equations but it retains the
mass-balance assumption of Ecopath by tuning the model
to the baseline observations on biomasses and consumption
rates of the functional groups at a given reference time. We
should note that this does not imply equilibrium; known
changes in biomasses can be incorporated in the Ecopath
biomass flow equations.

A fundamental difference with mass-action models is the
introduction in Ecosim of the foraging arena concept (Wal-
ters and Juanes 1993; Walters and Martell in review), by
which only a dynamic fraction of each ecosystem compo-
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nent is vulnerable to predators. The fact that parts of the
prey populations are not vulnerable effectively augments
bottom-up effects compared with typical Lotka-Volterra-
based models. Through alternative parameterizations, users
can represent a variety of assumptions about the nature of
predator-prey interactions.

Ecopath with Ecosim software is a widely used tool for
the quantitative analysis of food webs and ecosystem dy-
namics (e.g., Pauly et al. 2000), and new capabilities are
being constantly developed. In particular, the software can
input historical trends in fishing mortality or effort, produc-
tivity indices (such as upwelling), recruitment indices, and
biomass of other, nonmodeled species to drive the dynam-
ics. Also, predicted trends can be fitted to observed trends
in relative or absolute abundances, to direct estimates of
total mortality rate, and to historical catches. Advanced
users are beginning to experiment with fitting the model to
time series data using formal statistical methods, but this is
in its early stages of development compared with single-
species approaches.

4.8.2 Critical Evaluation of Approaches

4.8.2.1 Uncertainty Analysis

Our limited ability to forecast population abundances and
catches has several roots: observation uncertainty, process
uncertainty, model uncertainty, and institutional uncer-
tainty.

First, we do not ‘‘observe’’ marine populations directly,
nor do we observe all the relevant variables to be able to
estimate population abundance confidently and understand
the relationships that govern their interactions. Errors in es-
timates of current exploited stock sizes obtained by modern
assessment methods commonly exceed 30% (NRC 1998).
Much larger errors, as large as 200%, have resulted from the
use of flawed assessment models (Walters and Maguire
1996). The abundance of other unexploited ecosystem
components may be even less known. This means that there
is substantial uncertainty about the initial conditions of the
variables involved in running any forecast model. Impreci-
sion and biases in diet composition data used to parameter-
ize predator-prey relationships are also a problem. In
particular, Walters and Martell (in review) have cautioned
about the risk of missing small prey items infrequently eaten
by abundant predators, a phenomenon that may strongly
affect prey dynamics.

Second, natural processes are inherently variable, and no
matter how good our models may be, they cannot predict
the exact state of the system at any given time in the future.
In marine populations, most life histories involve an early
larval stage that is subject to the vagaries of the planktonic
environment. As a result, variability in recruitment contri-
butes substantial process uncertainty (Botsford and Parma in
press). Oceanic processes are subject to large-scale decadal
oscillations, as well as episodic events like El Niño that alter
primary production and hence fish productivity. It has
proved very hard to build these environmental drivers into
fishery models.
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Third, models consist of relationships between variables
(functional or probabilistic) and parameters, and there is un-
certainty in both: structural uncertainty and parameter un-
certainty. As a rule, many alternative models are consistent
with experience and historical data, but some model uncer-
tainties are more critical than others. For example, the pro-
ductivity of a stock at low biomass is critical for the
estimation of sustainable harvest rates; uncertainty about the
stock structure and the proper spatial resolution to consider
may affect interpretation of most observed patterns; differ-
ent parameterizations of predator-prey relationships may
completely change the behavior of a multispecies model,
from top-down to bottom-up (Walters and Martell in re-
view).

Fourth, forecasts usually assume that some management
scheme will be in place in the future. In reality, there is
substantial uncertainty about future management decisions
and the degree of compliance with management regula-
tions. Although this could be considered part of model un-
certainty, institutional uncertainty brings into play a higher
order of complexity associated with forecasting how society
and its institutions will behave in response not only to the
vagaries of natural systems but also to economic, social, and
political forces.

Different forecasting approaches have different capacities
for dealing with uncertainty. Modern single-species fore-
casts usually incorporate uncertainty in initial conditions,
process uncertainty, and parameter uncertainty using Bayes-
ian techniques. Structural uncertainty is commonly treated
in a more ad hoc way, by conducting forecasts using a small
number of alternative model structures when searching for
robustness in policy performance (e.g., Butterworth and
Punt 1999). Less frequently, formal Bayesian techniques are
used to estimate the plausibility of alternative model struc-
tures (e.g., Patterson 1999; McAllister and Kirchner 2002;
Parma 2002a).

Multispecies models of intermediate complexity, like
those derived by extending single-species models to ac-
count for predation effects, facilitate the incorporation of
current state-of-the-art tools used in single-species models.
When it comes to large multispecies approaches, uncertain-
ties that surround model forecasts are much less frequently
conveyed. For example, uncertainties about input parame-
ters to Ecopath can be explored using the ECORANGE
routine, but the sensitivity of Ecosim predictions to these
uncertainties is often overlooked. Walters and Martell (in
review) recommend the use of alternative values to parti-
tion predation mortalities, in addition to those implied by
diet composition data, to evaluate sensitivity with respect to
uncertainty in the data. Despite similar warnings repeatedly
made by modelers (Aydin and Friday 2000; Walters et al.
1997), the software has often been often used as a black
box.

4.8.2.2 Strengths and Weaknesses of Different Approaches

The merits and limitations of the different forecasting ap-
proaches need to be viewed in the context of the purpose
of the forecasting exercise—that is, what question is being
addressed. Single-species approaches continue to be the
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preferred approach for evaluating the performance of sin-
gle-species management procedures. Their main strength is
that they are formally conditioned on past data (which
means management draws its lessons from history). The
methods for doing this are supported by a significant devel-
opment of statistical techniques (and specialized software)
for estimating model parameters efficiently, quantifying un-
certainty based on modern Bayesian techniques, and incor-
porating this uncertainty in decision analysis. Their
limitations are mainly a function of the quality of the data
used for model fitting and the peculiar history of exploita-
tion of the stock in question.

In many cases, stock assessments, and in turn population
forecasts, rely solely on fishery-dependent data. This is
problematic because there are many ways in which catch
per unit of effort may fail badly as an index of stock abun-
dance (Hilborn and Walters 1992). Also, many exploitation
histories correspond to depletion trajectories, the so-called
one-way trips (Hilborn and Walters 1992), which do not
provide needed contrast in abundance and effort, making it
hard to distinguish productivity and mortality parameters
when conditioning on past data. Conditioning is so critical
because by fitting a model to historical data before attempt-
ing a forecast, we demonstrate that the model is able to
reproduce historical trends and we constrain the universe of
possible models. This, however, is no guarantee that the
model will be able to extrapolate system responses correctly
to novel perturbations in the future.

Aside from these limitations, single-species approaches
obviously cannot be used to address ecosystem questions,
such as forecasting the impact of large-scale perturbations
or determining how human interventions propagate from
particular components to the rest of the ecosystem. Some
multispecies concerns, such as the impact of a given single-
species management procedure on other species, may best
be addressed by modeling only the linked dynamics of the
key species involved, as in the ‘‘minimal realistic model’’ of
the hake-seal system developed by Punt and Butterworth
(1995). The uncertainty present in single-species models is
here compounded by uncertainty in the parameters and re-
lationships that govern species interactions. This increase in
model uncertainty was the main reason why the large
multispecies approaches developed in the late 1970s and
early 1980s fell out of favor (Quinn in press).

The resurgence of multispecies models, such as MSVPA
in the North Sea and the Bering Sea, was accompanied by
major investments in field programs of stomach data collec-
tion to help fill some of the information gaps. Unfortu-
nately, such investments are seldom possible, so lack of basic
data to support multispecies models will be a major limita-
tion for their widespread use.

Beyond observation uncertainty, other problems de-
tected when using top-down multispecies models to fore-
cast ecosystem changes seem to reflect limitations of the
basic core assumptions used to represent predator-prey in-
teractions. MSVPA, for example, assumes that the predator
is always able to consume a fixed ration of food. According
to Walters and Martell (in review), forecasts done using top-
down multispecies models based on the mass-action princi-
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ple have produced some unrealistic results (such as strong
trophic cascades, loss of biodiversity, and dynamic instabil-
ity) more drastically and more frequently than is supported
by field evidence.

The development of the foraging arena concept of
Ecosim as an alternative to mass-action assumptions was a
major step forward, allowing control of the degree to which
the model behaves as top down or bottom up. However,
choosing appropriate values for prey vulnerability parame-
ters is difficult due to the lack of information to quantify
these processes (Plagányi and Butterworth in review). The
alternative of using default values followed in many applica-
tions is unsatisfactory, as Ecosim predictions are highly sen-
sitive to the choice of vulnerability settings (Shannon et al.
2000). Further development of time series–fitting ap-
proaches and alternative estimation schemes will be needed
to help parameterize these processes. Some alternatives are
discussed by Walters and Martell (in review).

Like the foraging arena formulation, the implications of
several other assumptions in Ecosim are just beginning to
be explored (see detailed discussions in Aydin and Friday
2000; Christensen and Walters 2000; Plagányi and Butter-
worth in review; Walters and Martell in review). In particular,
the assumption of mass balance and the use of Ecopath as a
starting point have raised criticism. On the one hand, the
mass balance condition is a strength in that information is
added by forcing the productivity of all consumers to be
supported by primary productivity in the ecosystem. This is
in sharp contrast to Lotka-Volterra systems, where the over-
all productivity is unconstrained, leading to instability.

This information, however, is not without a cost. First,
it augments the requirements for ecosystem-wide data, in-
cluding primary production, and specification of the form
of functional responses in predator-prey relationships
among all functional groups represented. Second, reliance
on Ecopath biomass flows balanced for some reference time
implies that predator-prey parameters are time-invariant,
which may not hold when the ecosystem changes substan-
tially from the reference situation. The assumption of equi-
librium commonly made when balancing Ecopath equations
may be even more problematic when biomass of some of
the key groups is changing during the reference time (Wal-
ters et al. 1997; Plagányi and Butterworth in review).

To conclude, single-species approaches will be hard to
beat as tools for describing the dynamics of exploited stocks.
Improvements on predation mortalities may result from in-
corporation of multispecies interactions but only when the
data required to parameterize them are available. Large
multispecies models such as MSFOR and Ecosim, on the
other hand, have been and will be useful to explore ecosys-
tem function and to postulate alternative scenarios about
plausible ecosystem responses to environmental change and
human interventions, when applied taking due care of un-
certainties and potential pitfalls. To date, calibration and di-
agnostic methods and expertise have not yet advanced to
the standards common in single-species fishery models. The
value of these approaches to guide management decisions
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in the future will be a direct function of the expertise gained
in that area.

None of the forecasting tools should ever be used with-
out at the very least exploring the sensitivity of predictions
to alternative model parameterizations and observation un-
certainties. This is less of a problem in single-species fishery
forecasting because assessment scientists have learned (the
hard way) not to trust model predictions, and growing em-
phasis is placed on robustness and precaution. The risk is
more serious with multispecies powerful packages like Eco-
path with Ecosim, which are relatively easy to set to run
without careful consideration of the implications of default
choices.

4.8.3 Research Needs

In general, it can be argued that fishery models must be
unsuccessful because such a large portion of fishery stocks
have been overexploited, and some have even collapsed. In
many of these cases, however, the collapse of the stocks was
anticipated by the models (of, for example, Georges Bank
cod). Thus it is not clear what is a failure of modeling and
what is a failure of policy-making.

Improved understanding of ecosystem function and im-
proved forecasting capabilities will require research and de-
velopments in several fronts, including:
• research aimed at improving understanding of spatial

structure and relevant scales at which different natural
processes operate and at evaluating when is it worth the
effort to incorporate the space dimension into single or
multispecies models and collect the required data;

• development of approaches to bridge the gap between
detailed process-oriented studies and simpler empirical
models useful for fisheries forecasting (can we use the
results of process-oriented studies to build alternative
scenarios, represented as simple model prototypes, and
assign relative plausibility?);

• further development and testing of formal approaches
for conditioning ecosystem models to different sources
of information, including times series data;

• development of new methods for estimating predator-
prey vulnerability parameters; and

• further exploration of the implications of core assump-
tions made in ecosystem models and consideration of
alternative formulations.

4.9 Forecasting Impacts on Coastal Ecosystems
Ecological forecasts predict the effects of biological, chemi-
cal, physical, and human-induced changes on ecosystems
and their components. Short-term coastal ecosystem fore-
casts, such as predicting landfall of toxic algal blooms, are
similar to those done for weather and hurricane prediction,
which also affect human well-being. On the other hand,
forecasting large-scale, long-term ecosystem changes has
similarities with macroeconomic forecasts that rely heavily
on expert judgment, analysis, and assessment, in addition to
numerical simulation and prediction. Forecasts of such
broad-based, long-term effects are particularly important
because some of the most severe and long-lasting effects on
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ecosystems may result from chronic influences that are sub-
tle over short time frames. In this sense, one aspect of coastal
forecasting has a longer history because of the well-developed
use of modeling in fisheries stock assessments, as described
in the preceding section.

Coastal ecosystem models should be able to predict
long-term changes in ecosystem function based on past and
present environmental and societal change and on coastal
governance processes. The results of such a model will de-
pend not only on the modeling of physical, chemical, and
biological spatial and temporal data but also on the value
judgments involved in the decision-making process. The
key direct drivers of coastal ecosystem change that may af-
fect human well-being and that are a priority for coastal
forecasting are eutrophication, habitat modification, hydro-
logic and hydrodynamic disruption, exploitation of re-
sources, toxic effects, introduction of non-native species,
global climate change and variability, shoreline erosion and
hazardous storms, and pathogens and toxins that affect
human health.

4.9.1 Existing Approaches

The basic structure of a simple coastal forecasting model
consists of a meta-data portal linked to an analysis system.
The meta-data portal is an algorithm that integrates and
manages data from many disparate sources and organizes
them into a form that can be used by the analysis system.
Data can be from archived sources or arrive in real time
from satellites and onsite measuring instruments. The analy-
sis component that processes the physical, chemical, and bi-
ological data required to monitor the direct drivers is
normally handled by a set of interactive deterministic multi-
models, the choice of which depends on the questions
being asked. Interactive or coupled multimodels consist of
a set of stand-alone models that handle different kinds of
data (such as in situ optics, chemical analyses, and remotely
sensed data) and that communicate with each other in order
to predict the likelihood of some outcome (such as a harm-
ful algal bloom). Final output is usually in the form of a
visual display in a GIS or mapping module.

Deterministic models are commonly of two types: em-
pirical models based on observation or experience in partic-
ular places and mechanistic models based on theories, which
explain phenomena in purely physical terms. Empirical
models are very common but of limited general use and are
not discussed further. What we need instead are models that
can accommodate the value judgments involved in the
decision-making process of humans. For this, some sort of
decision support system is required. The current state of the
art is still a long way from integrating this latter aspect into
existing coastal forecasting systems, which at present do not
allow sufficient lead time for coastal managers to intervene
in order to avert a potentially undesirable long-term out-
come. This assessment is not meant to review the many
excellent scientific publications on coastal models. It aims
rather to give a sense of the state of the art in relation to the
aspiration of building scenarios that inform the decisions of
coastal managers for long-term planning.
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4.9.1.1 Nowcast/Forecast Modeling Approach

A nowcast/forecast type system results when data from
multiple sources is fed to a meta-data portal in real time.
The term ‘‘nowcast’’ is used because it refers to the fact
there is no lag time between events and analyses—data are
immediately fed into the decision analyses. Nowcast models
are of interest because they promise the possibility of allowing
scenarios over long time scales to respond to discontinuities
and surprises as they arise. The Global Ocean Observing
System has scientific details of the operation of a nested set
of regional coastal and ocean forecasting systems (see http//:
ioc.unesco.org/goos).

An illustrative state-of-the-art example of a regional
nowcast/forecast system is the New Jersey Shelf Observing
System being developed by the Coastal Ocean Observatory
Laboratory. The aim is to provide a synoptic 3-D picture of
the biogeochemical cycling of elements and physical forcing
of continental shelf primary productivity in the New York
Bight (Schofield et al. 2002). The system under develop-
ment consists of an array of surface current radar systems,
color satellites, and autonomous underwater vehicles. These
will input mainly bio-optical data into a new generation of
physical-biological ocean models for hindcast and real-time
continental shelf predictive experiments. Results will be
disseminated in real time to both field scientists and water
quality forecasters over the Internet (marine.rutgers.edu/
cool) as well as to the general public (www.coolroom.org).

The ensemble of forecasts is generated by an extensive
suite of atmospheric, ocean, and biological models includ-
ing ROMS–the Regional Ocean Modeling System and
TOMS–the generalized Terrain-following Ocean Model-
ing System. ROMS is interfaced with a suite of atmospheric
forecast models. TOMS is coupled with a bio-optical eco-
system model, which uses the spectral distribution of light
energy along with temperature and nutrients to estimate the
growth of phytoplankton functional groups representing
broad classes of the phytoplankton species. The biological
forecast can then be validated in real time from the field
measurements that can guide the evolution of the model.
Errors between the model prediction and the field measure-
ments are used to direct autonomous underwater vehicles
into regions where more data are needed.

4.9.1.2 Decision-Support Approach

Another approach is to supplement deterministic models by
decision-support techniques. Decision analysis is a step-by-
step analysis of the consequences of choices under uncer-
tainty. Decision-support techniques include cost-benefit
analysis, cost-effectiveness analysis, multicriteria analysis,
risk-benefit analysis, decision analysis, environmental impact
assessment, and trade-off analysis. Of the various decision-
support techniques in use, only multicriteria analysis uses
mathematical programming techniques to select options
based on objective functions with explicit weights, which
stakeholders can then apply. The other approaches are not
easily adaptable to mathematical programming techniques
because of lack of clear techniques for incorporating infor-
mation in the decision-making process.
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SimCoast provides an illustrative example of how a
fuzzy logic expert system can be objectively programmed
into a coastal ecosystem decision-support model. According
to McGlade and Price (1993), three key intelligent systems
techniques potentially useful for sustainable coastal zone
management are neural networks, expert systems, and ge-
netic algorithms. However, interactions between these
methods and other approaches such as fuzzy logic and issue
analysis also give users the ability to assess the combined
uncertainty and imprecision in their knowledge and data.

SimCoast is a fuzzy logic, rule-based, expert system in
which a combination of a fuzzy logic and issue analysis has
been used to produce a soft intelligence system for multi-
objective decision-making. It is designed to enable re-
searchers, managers, and decision-makers to create and
evaluate different policy scenarios for coastal zone manage-
ment. The conceptual basis is a two-dimensional multi-
zoned transect onto which key features such as ports, laws,
mangroves, and activities such as fisheries, aquaculture,
shipping, and tourism are mapped. These activities are asso-
ciated with different zones and with the process to which
they are linked (such as land tenure, erosion, organic load-
ing). The effects of activities on the features are evaluated
in relation to defined policy targets (water quality, system
productivity, ecosystem integrity, for instance) measured in
particular units (oxygen level, turbidity, E. coli concentra-
tions, number of species, or biomass). This evaluation is the
result of consensual expert rules defined during workshops.
Fuzzy logic and certainty factors are used to combine new
data and build scenarios based on the ideas or even alterna-
tive hypotheses of experts.

4.9.2 Critical Evaluation of Approaches

4.9.2.1 Nowcast/Forecast Modeling

There are numerous coastal ecosystem nowcast/forecast
systems based on deterministic models coupled to a GIS to
predict harmful algal blooms, oxygen depletion effects, oil
spills, climate change effects, and the like. In spite of their
great scientific interest, these approaches require consider-
able expertise and resources that are not widely available to
coastal ecosystem managers around the world. Further, each
coastal area has different conditions and priority problems,
so that no single system of deterministic models will be use-
ful in most situations.

Coastal nowcast/forecast systems are typically domi-
nated by uncertainties in model initialization largely attrib-
utable to under-sampling. To deal with this, an ensemble of
forecasts with differing initial conditions is used to identify
regions in which additional data are required (Schofield et
al. 2002). Hence the models provide insight into what has
not been sampled and guidance for further real time obser-
vational updates using multiple platforms, including remote
(satellites, aircraft, and shore-based), stationary (surface and
subsurface), movable (ships and autonomous underwater
vehicles), and drifting (surface or vertically mobile) systems.

This rapid environmental assessment capability changes
the entire paradigm for adaptive sampling and nowcast/
forecast modeling. Forecast errors or misfits may now be
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dominated by uncertainties in the model formulations or
boundary conditions, and ensemble forecasts with differing
model parameterizations identify regions in which addi-
tional data are needed to keep a model on track. In the time
it takes to prepare the ensemble of forecasts for the well-
sampled ocean, additional data have arrived, and on-the-fly
model-data metrics can be used to quantify which forecast
in the ensemble is the least uncertain (Schofield et al. 2002).
This approach offered the MA the potential to have scenar-
ios and long-term forecasts dynamically updated to adapt
to discontinuities and surprises, which are an increasingly
common feature of the modern world.

4.9.2.2 Decision Support Systems

Decision support techniques are not really forecasting
methods. They do, however, provide a structured frame-
work through which a choice between alternatives can be
made with regard to a given set of criteria. This more
widely accessible approach can be criticized for theoretical
difficulties associated with aggregating preferences for use as
weights in the models.

Expert systems, by their very nature, deal with a good
deal of uncertain data, information, and knowledge. Deci-
sion support systems use many methods to integrate uncer-
tain information for inference: these most commonly
include Bayes theorem or the Dempster-Shafer theory of
evidence, but certainty factors and fuzzy sets are sometimes
also used. The commonly used Dempster-Shafer theory of
evidence (Dempster 1968; Shafer 1976), which is an exten-
sion of Bayes theorem, appears to be a robust approach.
According to Moore et al. (2001), this theory does not re-
quire exhaustive prior or conditional probabilities before
calculation can take place, and it can be used where evi-
dence is based on vague perceptions or entirely lacking.

Normally, where probabilities are not known, equal
prior probabilities are unrealistically assigned to each com-
peting piece of evidence, and the sum of all assigned proba-
bilities must equal one. With the Dempster-Shafer theory,
an ignorance value close to zero (ignorance � 0 represents
complete ignorance) can be used to represent the lack of
information, rectifying what would be erroneous with
probability. Related to this is the fact that when belief is
assigned to a particular hypothesis, the remaining belief does
not necessarily support the hypothesis’ negation. Other ad-
vantages of using the Dempster-Shafer theory include the
ability to use evidence supporting more than one hypothesis
(a subset of the total number of hypotheses). Finally, this
approach models the narrowing of the hypothesis set with
the accumulation of evidence, which is exactly how experts
reason. It held the possibility for the MA to allow fully spec-
ified uncertainties being attached to scenarios. It creates a
feedback loop, which stimulates human beings to take deci-
sions that they think may change the scenario outcome.

4.9.3 Research Needs

Traditional ecological forecasting and decision-support
methods are no longer adequate because they have a limited
ability to predict discontinuities—significant nonlinear
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changes in the direct or indirect drivers of change that force
a fundamental re-evaluation of strategy or goals. We there-
fore need to look for new models that are able to accom-
modate discontinuities and facilitate proactive scenario
planning where the past is an increasingly unreliable guide
to the future.

Perhaps the deliberative process that attempts to look at
the long-term future of ecosystems advocated by Clark et
al. (2001) and adopted by the MA should advance beyond
conventional ecological forecasting and be more accurately
referred to as ecological foresighting. This is taken to mean
not the identification of the most likely scenario but the
evaluation of many possible, feasible, or even desirable sce-
narios. This helps develop a deeper understanding of the
options and promotes better planning from a backcasting
standpoint. Since long-term ecological foresighting must
have as a base significant hindcast and nowcast information,
both nowcast/forecast deterministic models and scenario-
based decision support systems need to be linked so that
relevant up-to-date alternatives are presented to coastal
managers.

We need to also develop ways of modeling and of esti-
mating how ecosystem services respond to combinations of
stresses at local and regional scales. The combination of
complex interactions among a large number of components
with the variable nature of ecosystems and their driving
forces makes the development of such tools a significant
challenge. Potential techniques include neural nets, artificial
intelligence, fuzzy sets, and massively parallel algorithms.

4.10 Forecasting Impacts on Human Health
Forecasting the impacts of future ecosystem change on
human health (McMichael et al. 2003) at a global scale and
over the next century is daunting. This task is subject to
such large uncertainty that it might reasonably be consid-
ered impossible, or at least not scientific. Nevertheless, un-
certainty is not infinite, and many boundary conditions can
be identified. These include not only the consistency of
anatomy, physiology, and pathophysiology (disease proc-
esses), but also the fact that social and technological factors
will continue to influence and modify human health, as
they have for millennia. Though substantial uncertainty re-
mains about the characteristics of even present health at the
global scale, a great deal is known.

4.10.1 Existing Approaches

One dominant approach to modeling human health and
disease is embodied by classical epidemiological and biocli-
matic treatments of malaria, and even wildlife disease (e.g.,
Dobson 2000; Rogers and Randolph 2000). These ap-
proaches typically start with a detailed look at one disease
and one host, and then build toward predictions of critical
thresholds for epidemics and the implications for public
policy. Land changes or climatic changes are especially im-
portant when the diseases are transmitted by vectors, such
as malaria being transmitted by mosquitoes; this is because
temperatures alter vector survival and behavior, and land
alterations can create or destroy habitats for vectors. Be-
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cause they are host-pathogen specific, these approaches do
not lend themselves easily to global assessments; nor are
they motivated toward global assessment, since health pol-
icy is often formulated one disease at a time. Currently,
there is a move away from modeling one species at a time—
even from the perspective of classical epidemiology. For in-
stance, there is a growing recognition that climatic and
habitat perturbation may underlie the emergence of many
new human diseases (Patz et al. 1996), but no models of this
process are yet available.

Because of the limitations of single-species disease mod-
els, an alternative emphasis for global assessments has been
on a more phenomenological or aggregate approach that
emphasizes connections between population demography,
social behavior, and poverty. This topic can appear over-
whelmingly complex. It may be useful to consider that un-
certainty applies to three key ‘‘black box’’ determinants
relevant to this task. These boxes can be conceptualized as
input, output, and modifying determinants, where input
represents the state of ecosystems, output the state of health,
and modifiers the social, technological, and political co-
factors that can either dampen or exacerbate the importance
of ecosystem change upon health. Of course, in reality these
categories are not clearly separate. At all times, a continuous
interaction exists between these three categories, though
often the causal links are subtle, poorly identified, and at
least in some cases—away from thresholds—unimportant.

Clearly, myriad possible interactions and cascading re-
sponses between ecosystem services, human health, and the
societies and institutions that modify and influence both
health and ecosystems are possible. The outcomes can be
positive or negative. One method has been proposed to
classify potential adverse responses into one of four broad
groups, called ‘‘direct,’’ ‘‘mediated,’’ ‘‘modulated,’’ and
‘‘systems failure’’ effects (Butler et al. in press).

In this categorization, direct health effects manifest
through the loss of a useful ecosystem service, such as the
provision of sufficient food, clean water, or fertile soil or
the restriction of erosion and flooding. Direct effects occur
as the result of physical actors but do not include pathogens
per se. They are probably the most easily understood of the
four effects.

Mediated effects, as opposed to direct ones, have in-
creased causal complexity and in some cases involve patho-
gens. Some have potentially high morbidity and mortality.
There is also often a longer lag between the ecosystem
change and the health outcome than for direct effects.
Many infectious and some chronic diseases fall in this cate-
gory. In many of these cases disease have emerged as a result
of the increased food-producing capacity of ecosystems (a
provisioning ecosystem service)—for example, by animal
domestication, irrigation, dams, and other intensive farming
practices. A trade-off has been the unforeseen increase in
the incidence and prevalence of many of these communica-
ble diseases.

Effects called ‘‘modulated’’ and ‘‘systems failure’’ have
also been identified as larger-scale, more lagged, and more
causally complex adverse consequences of ecosystem
change. Modulated effects refer to episodes of state failure
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or of nascent or realized large-scale social and economic
collapse. Systems failure refers to economic and social col-
lapse at a supra-national scale as a result of coalescing, inter-
acting modulated effects.

This classification can be mentally fitted to different eco-
system futures. For example, if a region experiences marked
loss of provisioning services, then direct adverse effects,
such as the disruption of flooding or increased hunger, are
likely. Loss of biodiversity, and more contact between hu-
mans and undomesticated species may mean the occurrence
of more mediated effects, including emerging infectious
diseases. Greater intensification of animal husbandry may
facilitate the spread of recombinant forms of known dis-
eases, such as influenza. However, more realistic and useful
predictions of the health impact of ecosystem change re-
quire greater understanding and at least attempted predic-
tions of the social, institutional, and technological factors
that modify health—the third of the black boxes identified
earlier.

In some cases, such as modulated health effects, health
itself may critically affect the quality of these human ser-
vices. It is true that modulated effects are far less likely to
occur in societies that have strong institutions, reasonable
governance, and high technology. Adverse health effects
consequent to ecosystem change and reduced ecosystem
services may in some cases overwhelm societies that are al-
ready fragile, however, causing them to exceed a ‘‘tipping
point’’ beyond which decline is highly likely.

Although far less likely, it is also possible to envisage
pathways and causal webs that test the social, economic,
and health fabrics of societies that currently appear almost
invulnerable to adverse ecosystem change. For example, an
interlocking cascade of adverse events and erroneous deci-
sions led in the last century to the Great Depression and
World War II. Although perceived resource scarcity was a
factor in this cascade (for example, in both the German and
Japanese peoples’ desire for expansion), ecosystem buffers—
especially on a per capita basis—were far higher then than
they are now.

4.10.2 Critical Evaluation of Approaches

Conventionally, scenario theorists accentuate and extrapo-
late existing trends into the future, imagining and modeling
how different futures will unfold. One problem with the
scenario approach is that assumptions about the future are
typically ‘‘bundled together,’’ as in ‘‘TechnoGarden,’’
whereby across-the-board technical innovation is expected
to meet global challenges. But an imaginary future marked
by rapid technological progress may adversely affect human
health if it is not also accompanied by other forms of prog-
ress. That is to say, affordable vaccines, surgery, and pharma-
ceuticals may not be fully able to compensate for poor
health if high technology is also accompanied by a dehu-
manization of society.

Second, human health is a mix of technology, environ-
ment, and social systems. Predicting how these interlink is
almost impossible, and we lack both theory and empirical
relationships as guidance. We have studies that predict how
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climate variability might directly affect human health
through air pollution and diseases (McMichael et al. 2003),
but the fact that climate change will also alter distribution
of wealth and disrupt societies is not factored into these
health predictions.

Reductionist approaches to science have sought to sim-
plify and analyze reality by considering isolated elements,
and at ever finer resolution. This approach has been very
successful in many fields and has contributed substantially
to the enormous scientific, technological, and material
progress that marks our time. And although material prog-
ress is not sufficient for either human health or human well-
being, it is clearly an important contributor to both. Yet
reductionist methods have limits that are increasingly rec-
ognized. A major drawback is that they mask the signifi-
cance of threshold effects and, even more important, they
can actually hide the concept of thresholds.

In a linear, reductionist conceptualization of reality, an
increment of change is not of itself very important. If the
experimenter (including the unwitting social and ecological
experimenter) concludes that an increment of change causes
an undesirable increment of response, then linear thinking
suggests that the remedy is simply to subtract that incre-
ment. In many cases this is possible. In ecosystems, society,
and human health, however, innumerable though still
poorly defined thresholds exist beyond which reversal is ei-
ther impossible or prohibitively expensive. This phenome-
non of costly or impossible reversibility, also known as
hysteresis, is increasingly recognized in ecology (Scheffer et
al. 2001a), but has as yet been little studied in relation to
health and society (Butler et al. in press).

4.10.3 Research Needs

The critical areas of research entail linking together the
many threads that affect human health. We still lack some
of the most basic information on how the epidemiology
of disease is altered by the environment. Inevitably, human
systems respond to health threats, and any sort of prediction
regarding possible adaptive responses is totally lacking in
global health projections. We know historically that the col-
lapse of social systems can drastically affect human health.
Systems failure, were it to occur, is possible as the century
unfolds. Yet we have very little ability to predict or antici-
pate these system failures, which in turn put so much stress
on health care systems.

There may be many opportunities for translating the
successes of specific epidemiological models into true global
assessments. The situation now is very much like that of
ecology 30 years ago, when the focus was on single-species
models or models of pairs of interacting species. The rise of
ecosystem science and attention to biodiversity prompted
a whole new generation of models, but still with critical
ecological underpinnings. Global health assessments would
benefit from attempts at using epidemiological models to
scale up and aggregate over many diseases toward summary
predictions.

4.11 Integrated Assessment Models
Many environmental problems are caused by a complex
web of causes and effects that have environmental, social,

................. 11411$ $CH4 10-27-05 08:41:43 PS



103State of the Art in Simulating Future Changes in Ecosystem Services

and economic dimensions. The fact that these webs cannot
be well described by disciplinary approaches has led to an
increasing interest in integrated assessment models. Weyant
et al. (1996), Van der Sluijs (1997), Rotmans and Dowlata-
badi (1998), and Toth and Hizsnyik (1998) provide interest-
ing reviews of integrated assessment definitions and
methods. In general, they describe IAMs as modeling
frameworks to organize and structure various pieces of (dis-
ciplinary) scientific knowledge in order to analyze the
cause-effect relationships of a specific problem. The analyses
should have a wide coverage and include cross-linkages and
interactions with other problems.

The term IAMs is applied in particular to models that
include some description of the socioeconomic system (in-
cluding economic activities and human behavior, popula-
tion dynamics, and resource use) and its interaction with the
environmental system (regional air pollution, the climate
system, land cover/land use, and so on). They can be quali-
tative (conceptual models) or quantitative (formal computer
models). IAMs are used to synthesize available scientific in-
formation from different disciplines, and their specific ap-
proaches and assumptions, in an organized way. An essential
feature of IAMs is their focus on application for policy sup-
port and on assessment rather than scientific research per se.
In such policy-oriented applications, IAMs have different
functions. They serve as an early warning system and an
exploration of possible futures, they are used for policy
evaluation, and they provide tools that directly support
public decision-making and negotiations.

IAMs can be categorized in various ways. A first classi-
fication is the dominant modeling paradigm. IAMs can be
calculated as either simulation or optimization models.
Most simulation IAMs are based on differential equation
descriptions. Sometimes partial optimization is used. The
IAMs derived from an economic problem setting tend to
use optimization techniques to evaluate the minimum cost
or other objective function of certain trajectories. These
types of IAMs are like dynamic cost-benefit analyses.
Within both modeling paradigms, deterministic as well as
stochastic approaches are used, although the former domi-
nate. Within optimization IAMs, a further distinction can
be made according to the degree to which the objective is
to satisfy exogenous constraints or targets.

A second classification concerns horizontal and vertical
integration. Vertical integration refers to the degree to
which a model covers the full cause-effect chain of the rele-
vant issue—from driving forces to pressures, to changes in
state, to impacts, and finally to possible responses. Vertical
integration has emerged from the pressure-state-impact-
response framework in environmental policy. Horizontal
integration refers to the integration between different as-
pects of the object of study. This can be in a rather narrow
sense, such as integrating the interactions between water
and land cover/land use, or much wider, as in the integra-
tion of demographic/health issues and the state of the envi-
ronment. A related classification is in terms of the topic they
focus on. This is often a reflection of the intended policy
application. Many IAMs have been used to explore the dy-
namics of acidifying pollutants and greenhouse gases and
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their impacts. To make IAMs policy-relevant, cost modules
and allocation algorithms can be added.

As with other models, IAM outcomes depend strongly
on the assumptions made. As IAMs often cover a broad
range of different topics and focus on integration of disci-
plinary knowledge (scientific information on the linkages
among different disciplines is often less ‘‘strong’’ and in-
volves more expert assessment), these assumption play a
more important role than in other areas of modeling. In
IAMs dealing with climate change, for instance, key uncer-
tainties include developments of population and economy,
sociopolitical choices with respect to human development
(such as environmental policies), technology development,
and discount rates. Several tools have been developed to
deal with uncertainties. An important tool includes the use
of storyline-based scenarios, defining consistent sets of as-
sumptions. Others include more traditional uncertainty
analysis and the assignment of qualifications to uncertain
model outcomes (see, for example, www.nusap.net).

Almost by definition, the field of IA modeling is rather
broad and vaguely defined. One reason for this is that it is
relatively new, and universal rules and principles have not
yet crystallized. This makes the overview in this section
rather eclectic and limited, focusing on specific examples.
We do not intend to give an extensive overview of all avail-
able models in the field. For many specific applications,
such as integrated assessment of climate change, compre-
hensive overviews already exist (Weyant et al. 1996; Rot-
mans and Dowlatabadi 1998). We confine ourselves to
models with a relatively large level of integration that have
not yet been covered in other sections of this chapter.

4.11.1 Existing Approaches

IAMs first became popular in the fields of air pollution con-
trol and climate change. The work in these areas in the late
1980s and during the 1990s generated several models that
are useful for carrying out assessments in global environ-
mental change or sustainable development because they
have typically both a long time horizon and a global per-
spective. For example, UNEP’s Global Environment Outlook
(UNEP 2002) and IPCC’s Special Report on Emissions Scenar-
ios (Nakićenović and Swart 2000) have all built on these
models.

The first well-known IAM was built in the early 1970s
in response to the concerns about world trends of a group
of industrialists and civil servants, the Club of Rome
(Meadows et al. 1972). The computer simulation model
World3 described couplings between the major demo-
graphic, resource, and economic components of the world
system at the global level. It used the system dynamics
method developed at the Massachusetts Institute of Tech-
nology from electrical engineering science. Its main pur-
pose was to raise awareness about the nature of exponential
growth in a finite world and the systemic nature of the ob-
served and anticipated trends due to the various linkages
between what were at the time largely seen as separate
processes. It showed the risks in continuing business-as-
usual development paths—so much so that only its dooms-
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day message came across. This model, and subsequent efforts
at more disaggregated models (e.g., Mesarovic and Pestel
1974) inspired the development of a whole set of derived
models. It also started a vigorous debate about the nature of
market processes, which according to most economists
would solve most problems long before a catastrophe would
unfold.

A second generation of IAMs had a more narrow focus
on a particular environmental problem and the ways in
which policy could deal with it. This was partly in response
to the aggregate nature of the first generation models that
made it hard to perform meaningful validation and policy
support. An outstanding and well-known example in this
respect is RAINS—the Regional Acidification Information
and Simulation model of acidification in Europe developed
in the 1980s (Alcamo et al. 1990). It played and still plays a
major role in the international air pollution negotiations in
Europe.

The first steps of IAMs dealing with the causes and con-
sequences of climate change were taken in the late 1970s.
Examples include models by Nordhaus (1979) and Häfele
et al. (1981), although the environmental part in these ex-
amples was extremely simple, including only atmospheric
CO2 concentration. Mintzer (1987), Lashof and Tirpack
(1989), and Rotmans et al. (1990) extended these models by
including more physical and chemical aspects of the climate
system. Since then, a large number of such models have
been developed and currently more than 50 climate
change-oriented IAMs coexist (Van der Sluijs 2002). More
recently, IAMs have been developed with an expanded or
different emphasis, such as water (e.g., Döll et al. 1999) and
human health (Martens 1997). In the community of econo-
mists, the emphasis has been on the merging of a neoclassi-
cal economic growth model with a simple climate system
model and on using it in the search for cost-effective abate-
ment strategies. Here, too, a series of additions has followed,
such as a more elaborate energy system, more in-depth
treatment of technological dynamics, and integration with
impact modules.

As these third-generation IAMs are expanding their
scope and level of integration, they are slowly developing
from environmental or climate change models into global
change or sustainable development models. (See Table 4.1.)

4.11.2 Critical Evaluation of Approaches

Three evaluation criteria were developed for discussing
IAMs in the context of quantifying the MA scenarios:
• Is there any integration between ecosystems and other

parts of the (world) system, such as land, water, atmo-
sphere, population, and economy, and if so, how is it
done?

• At what spatial and time scale(s) are the ecosystem and
the interactions with other parts modeled, ranging from
short-term local dynamics to large-scale and global long-
term dynamics?

• To what extent is the model used, or has it been used,
for policy applications, and if so, how is the interface
with decision-makers or analysts constructed and ap-
plied?
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For our purpose, we clustered three groups of IAM
models. The first group contains models that have been
built with the explicit objective of providing an integrated
insight into a broad range of environmental, economic, and
social aspects of sustainable development. The second group
contains models that have been mostly built around the link
between economic development, the energy sector, and
the climate system. The third group of models is a subclass
of the previous one. These models started out as energy-
environment models but have evolved to a point where the
newly developed ones are now better characterized as a
third category: global change models. (We have not in-
cluded the IAM models on regional air pollution control
here because of their narrow focus. It should be noted,
however, that the RAINS modeling team is currently ex-
tending its framework to cover not only acidification, eu-
trophication, and ground-level ozone but also greenhouse
gas emissions.)

4.11.2.1 Sustainable Development Models

This group of IAMs has the highest level of integration in
terms of social, economic, and environmental issues. In
order to avoid levels of complexity that are too large, they
use a rather high level of aggregation. They use expert-
model derived meta-level descriptions of underlying proc-
esses—often correlations or ‘‘stylized facts’’—and a low
level of spatial or regional disaggregation. This group in-
cludes the system-dynamics World3 model and the more
recent related models such as International Futures (Hughes
1999), TARGETS (Rotmans and De Vries 1997), Thresh-
old 21 (Barney 2000), and GUMBO (Bouwmans et al.
2002). It also includes the Polestar system, which systemati-
cally links scenario assumptions and scenario outputs for a
wide range of issues (Raskin et al. 1999).

Consistent with their high level of aggregation, most of
these models try to answer rather broadly formulated ques-
tions, identifying possible trade-offs between economic de-
velopments and ecological functioning without providing
detailed and concrete strategies or policy advice on how to
deal with the trade-offs. From the perspective of developing
scenarios for ecosystem services, the TARGETS model, the
Polestar model, and the GUMBO model have provided in-
teresting insights. In the context of the MA, these models
had major advantages of allowing for a high level of integra-
tion and of including several feedbacks. Their description
of detailed (ecological) processes is often simple, however.

The TARGETS model (Rotmans and de Vries 1997;
De Vries 2001) has been developed at the Dutch National
Institute of Public Health and the Environment and applied
to work out three consistent perspectives on sustainable de-
velopment. It includes five submodels, one of which simu-
lates key biogeochemical cycles. The land cover/land use
and the food, water, and energy supply-and-demand dy-
namics are simulated at an aggregate level. Scenarios were
built around the framework of the Cultural Theory
(Thompson et al. 1990), with an evaluation of parameter
assumptions and model outcomes in terms of ‘‘utopian’’ and
‘‘dystopian’’ courses of events. The model allows a clear
linkage with ecosystem services at the high aggregation
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Table 4.1. Examples of Integrated Assessment Models (Adapted from Bakkes et al. 2000)

Analytical Horizontal Vertical Key Existing Ease of Use by
Model Technique Integrationa Integrationb Key References Scenarios Non-Developersc

World 3 system dynamics present limited Meadows et al. 1972; 13 explorative limited
Meadows et al. 1992 scenarios

Int. Futures system dynamics advanced limited Hughes 1999 base scenario very high

TARGETS system dynamics present present Rotmans and de Vries reference case high
1997 with varieties

Threshold 21 system dynamics advanced present several explorative very high
scenarios

Polestar accounting present limited Raskin et al. 1999; SEI SGS-scenarios very high
Boston Center 1999

MESSAGE dynamic linear limited limited Messner and SRES, WEC limited
programming Strubegger 1995; Riahi

and Roehrl 2000

MiniCAM partial equilibrium limited limited Edmonds et al. 1996 SRES high

AIM general equilibrium limited limited Morita et al. 1994 SRES, GEO limited

IMAGE system dynamics/ limited advanced Rotmans 1999; Alcamo SRES, GEO limited
simulation 1994; IMAGE-team

2001

a Very limited indicates a lack of integration between domains as well as within a domain. Limited refers to a lack in one of the two. Present indicates several
domains are covered in an integrated manner. Advanced is used for models that include environmental, economic, and sociocultural aspects.
b Limited refers to models where several parts of the cause–effect chains modeled are missing or not explicit. Present refers to the models where the casual
chain is modeled, but there is a lack of feedback from the output of the model to the input. The term advanced is reserved for models where this final loop
is also closed.
c Very limited refers to models that are not accessible to non-developers. Limited refers to models where the models can be used by outsiders after
considerable training. The term high classifies models that exhibit an interface and a level transparency that makes it very easy for non-developers to apply
the model and to adjust it to their own needs.

level used. In contrast to most other global models, the
TARGETS model included a full link back from environ-
mental change into demographic developments (including
health) and a partial evaluation of feedbacks upon the econ-
omy. The main disadvantages of the TARGETS model are
the lack of regional disaggregation and the fact that, like
most IAMs in this group, it was not related to a specific
decision-making process.

Polestar is an integrated accounting framework devel-
oped by the Stockholm Environment Institute’s Boston
Center (SEI Boston Center 1999). Its best known applica-
tion has been in conjunction with the Global Scenarios
Group (Gallopin et al. 1997). The backbone of the model
is an extensive data set containing a wide range of social,
economic, and environmental variables. Polestar has rela-
tively little relationships between each of the variables in
the system. In that sense, it is not so much of a model as an
accounting framework to explore various assumptions. It is
more suitable for exploring the range of possible futures and
the possible impact of certain policy interventions than for
deriving integrated and balanced answers for issues related
to political decision-making. Polestar has been very success-
fully applied in supporting various scenario development
processes with strong user involvement, including scenarios
that describe some elements of ecological functioning.

Finally, the GUMBO (Global Unified Metamodel of the
Biosphere) model was developed explicitly to deal with a
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description of ecological services and their possible future
development under various assumptions (Bouwmans et al.
2002). It is a ‘‘metamodel’’ in that it represents a synthesis
and a simplification of several existing dynamic global mod-
els in both the natural and social sciences at an intermediate
level of complexity. GUMBO includes dynamic feedbacks
among human technology, economic production, and wel-
fare and ecosystem goods and services within the dynamic
Earth system. It includes modules to simulate carbon, water,
and nutrient fluxes through the environmental and ecologi-
cal systems. GUMBO links these elements across eleven bi-
omes that together cover the entire surface of Earth (open
ocean, coastal ocean, forests, grasslands, wetlands, lakes/rivers,
deserts, tundra, ice/rock, cropland, and urban). The model
also nicely links to several socioeconomic elements of sus-
tainable development, such as the different types of capital
(human, built, social, and natural) that form an essential ele-
ment of the World Bank’s approach to sustainable develop-
ment and measures of sustainable social welfare.

4.11.2.2 Models Concentrating on Economy, Energy, and
Climate Relationships

IAMs have been very successful in the field of climate
change. A large number of IAMs have been developed, and
their results are regularly presented to and discussed with
decision-makers. In this way, they have clearly influenced
policy-making. Examples of interaction between outcomes
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of IAMs and decision-makers include use and development
of the IMAGE model in dialogue with policy-makers in the
Netherlands (Alcamo et al. 1996) or the contribution of
IAMs to several chapters of IPCC’s Third Assessment Re-
port, in particular with respect to mitigation strategies (Metz
et al. 2001). Reasons for this include that the issue of cli-
mate change refers to a rather complex web of causes, envi-
ronmental processes, and impacts (which can only be
understood well in an integrated way), that many crucial
relationships are well known, and, more recently, that an
institutionalized policy process exists. As a result, currently
more than 50 IAMs exist that cluster around the relation-
ship of economic development, energy use, and climate
change. Some of these also describe related issues such as
other atmospheric pollutants and depletion of resources. In
some publications, these models are referred to as 3E mod-
els: Economy, Energy, and Environment.

A clear difference within this group can be made be-
tween basic macroeconomic models, with little technologi-
cal and climate detail, and models that include a detailed
description of the energy sector. The first category includes,
among others, rather aggregated meta-models that aim to
link both economic causes of climate change and the result-
ing impacts in order to perform cost-benefit analysis, such
as the DICE model (Nordhaus 1994) and the FUND model
(e.g., Tol 1997, 2003). Both of these have been applied in a
large number of studies. A strong point of these models is
that they fully describe the cycle—from economic develop-
ment to climate change, possible damage from climate
change, and its feedback on the economy. However, the
detail in describing ecological functions in these models is
rather low and abstract. In particular, DICE describes cli-
mate change in terms of a limited set of equations for global
temperature increase with a couple of damage functions.
The FUND model, in time, has become more comprehen-
sive in its description of climate change impacts; now, for
instance, it also deals with spread of diseases.

Another group of models includes a more detailed de-
scription of the energy and the climate system but, in turn,
sometimes lacks a feedback on economic development.
This includes most of the models used in the recent IPCC
Special Report on Emission Scenarios study (ASF, MESSAGE-
MACRO, MARIA, MiniCAM, AIM, and IMAGE). (De-
scriptions and references of these models are provided by
Nakićenović and Swart, 2000; see also www.grida.no/
climate/ipcc/emission/index.htm.) Other influential IAM
models that fall into this category are the ICAM model
(Dowlatabadi 1995) and MIT’s Integrated Assessment
Model (Prinn et al. 1998). The ICAM model emphasizes
the role of uncertainty. The MIT model consists of a frame-
work of underlying state-of-the-art disciplinary models and
probably represents currently one of the most well devel-
oped models in the field.

4.11.2.3 Global Change Models

The models in this group are similar to those just described,
in that the emphasis is placed on the relationships between
energy and the environment. Reflecting a trend of the past
10 years and taking advantage of new computer tools and
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satellite data, the developers of these models have widened
their scope to include other aspects as well, in particular
land cover/land use change and the relationships between
land use change and climate change. For this reason, we
have chosen to characterize them as global change models.
This section focuses on the IMAGE and AIM models.

The IMAGE model is one of the well-known integrated
assessment models in this category (IMAGE-team 2001). It
includes a description of the energy/industry system, of land
use change, and of the climate system, partly based on 19
global regions and partly on a 0.5x0.5 grid. In more recent
years, it has both aimed at applications within the climate
change community (for example, in the IPCC-SRES) and
at much broader applications, such as UNEP’s Global Envi-
ronment Outlook (UNEP 2002). Ecological services that are
described within the model include the role of ecosystems
within carbon and nutrient cycling, provision of food and
energy, and some more abstract indicators of ecological
functioning. The number of linkages in IMAGE between
the environmental system and socioeconomic system, how-
ever, are limited. Within its more narrow focus of environ-
mental problems, nevertheless, horizontal integration is
exemplary. Vertical integration is more limited, as there is a
lack of feedback from the environmental impacts calculated
by the model on the macroeconomic trajectories that the
model assumes.

AIM is a set of models developed by the National Insti-
tute of Environmental Studies in Japan, including a general
equilibrium model but also some fuller integrated assess-
ment models (Kainuma et al. 2002). In terms of its coverage
and applications it is quite similar to the IMAGE model,
although the emphasis is more on East and South Asia.

4.11.3 Conclusions

Over the years several IAMs have provided relevant infor-
mation on the future of ecological services. This is in partic-
ular the case for regulating and providing ecological services
such as food and water provision and those related to bio-
geochemical cycles. Only a few models have been specifi-
cally developed to provide information on ‘‘sustainable
development’’ issues, however. (That term is used here to
indicate the central focus of the MA—ecological functions
and their relevance for human well-being.) Existing models
only cover trends for a few selected services. Evaluating
IAMs against the three criteria described earlier leads to sev-
eral conclusions.

4.11.3.1 Integration and Feedbacks

Although the integration in most models is high from the
perspective of the limited (environmental) problems they
were developed for, their integration from a perspective of
the MA’s objective is still rather low. In particular, the num-
ber of feedbacks that are included from ecological changes
on socioeconomic drivers are scarce. (Some exceptions are
the impacts of food production and climate policy on socio-
economic drivers.)

We believe that a better description of the linkages and
feedbacks from an overall sustainable development perspec-
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tive (instead of a single issue perspective) could improve
the relevance of a selected set of IAMs for broad global
assessments. An international attempt to further specify
these linkages and establish priorities for them against an
overall ‘‘sustainability science’’ context could be helpful.

At the same time, it is clearly not realistic to expect
models to be both comprehensive and detailed. Therefore,
nested approaches could provide a significant improvement
over existing work. Here, comprehensive but more aggre-
gated models provide drivers for more dedicated (and thus
more detailed) models. Such models could focus on partic-
ular issues or regions.

4.11.3.2 Level of Geographical Aggregation

The processes in ecosystems and hence the provision of
ecosystem services are most adequately considered as nested
dynamical processes occurring at various scales (Gunderson
et al. 1995). A proper understanding of their response under
human-induced direct and indirect (such as climate change)
perturbations demands models that cover various scales in
both space and time.

Given the purpose of the MA, models needed to ac-
knowledge heterogeneity and include a sufficiently detailed
regional/local specificity. With the new tools of geographic
information systems and an ever-growing amount of satel-
lite and field data, there is a clear tendency to invest in ever-
higher spatial resolution in models. This has a price, too, as
it usually implies less than global or even regional coverage.
At the same time, given ongoing globalization, many eco-
nomic processes potentially have ever-wider consequences
for ecosystem perturbations. Thus, at the economic level
as well, understanding the nature and dynamics of regional
differences and interregional links, in particular trade, will
be an important research issue for integrated modeling in
the coming years. Again, a nested approach to integrated
assessment modeling could be a helpful way forward, in
which global models provide context for detailed, regional
(ecological) models.

4.11.3.3 Areas That Are Poorly Covered

Ideally, IAMs should cover a wide range of different aspects
of sustainable development if they are to be used for policy-
relevant assessment with as broad a scope as the MA.
Clearly, some areas of ecosystem change are poorly covered.
In particular, the linkages between ecosystem change and
human development, in a broad economic and sociopoliti-
cal sense, are weak or absent in most IAMs. The institu-
tional components among them are notoriously weak. This
reflects the large and growing complexity of the economic
and social processes in an ever more integrated world.

There is as yet limited experience with and agreement
on how to connect the various layers of a vertically inte-
grated model. The emerging science of complexity, espe-
cially when it entails detailed simulation models of
socioecological systems, may indicate a way forward (Jans-
sen 2003; de Vries and Goudsblom 2002). Another strategy
is to include qualitative narratives and then try to support
certain parts of the narratives with the rigor and consistency
of quantitative models. Some parts of the environment are
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almost systematically lacking in IAMs, such as marine eco-
systems and coastal zones. This is also the case for a large
number of ecosystem services, in particular regulating and
cultural services. Our representation of the parts that are
included suffers from an incomplete understanding of the
underlying processes.

4.11.3.4 Application of IAMs

A major area of use of IAMs is in developing and analyzing
scenarios. Models should be only one tool in this process,
their main role being to generate and organize quantitative
projections. Descriptive narratives are powerful tools to
convey the broader significance of scenarios, as indicated,
for instance, in IPCC’s SRES scenario work. Among other
things, narratives bring in qualitative elements that quantita-
tive models cannot handle and convey that different scenar-
ios constitute very different worlds and, therefore, strategies
that will work in one future world may very well be out of
place in another.

Finally, we need to note that uncertainties are a key ele-
ment in IAMs, given their high complexity and focus on
decision-making. These uncertainties include, for example,
variability of parameters, inaccuracy of model specification,
and lack of knowledge with regard to model boundaries.
Although the existence of uncertainties has been recognized
early in the process of developing IAMs, in many of them
uncertainty analysis is included only partially or not at all.
Several new projects have been set up to work on uncer-
tainties in a more specific way (see, e.g., www.nusap.net).

4.12 Key Gaps in Our Modeling Abilities
Many of the shortcomings of models pertain to data limita-
tions or limitations of the models themselves. For example,
our ability to incorporate spatially explicit data is often lack-
ing. Two fundamental conceptual gaps stand out as espe-
cially important.

The first gap concerns the absence of critical feedbacks
in many cases. Examples can be found in virtually every
arena of forecasts. As food supply changes, so will patterns
of land use, which will then feedback on ecosystem services
and climate alteration and future food supplies. Land use
changes modify the climate, but the climate then alters the
vegetation possible on any parcel of land, which in turn
constrains the types of land cover possible. These types of
feedbacks are lacking throughout. This means the forecasts
are best over shorter time scales, before the feedbacks are
given time to resonate back through systems. It may be that
50 years, which is the timeframe of the MA projections, is
sufficiently short that the absence of critical feedbacks is not
as much of a liability as it might seem at first glance. If
these feedbacks are important, our models may be seriously
wrong in their predictions.

The second major gap is the absence of theories and
models that anticipate thresholds, which once passed yield
fundamental system changes or even system collapse. We
know it is possible to hunt or fish a species to extinc-
tion—to total collapse, in other words. A short time frame
for forecasts does not confer any immunity to thresholds,
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since we may be very close to certain thresholds at this point
in time. For this reason, the greatest priority for advancing
MA models is more explicit attention to anticipation of
thresholds.

Finally, there is the issue of model transparency and the
use of models by decision-makers. Much of what makes
models fail as useful assessment tools is that modelers often
get the technical process of modeling right but do not ac-
count for the fact that assessment tools need to be part of
existing social and political processes. There needs to be
much more work aimed at: how to ask modeling questions
so that they are relevant to policy and other processes; how
to find new ways to communicate complexity to nonspe-
cialists because of the abundance of nonlinearities, feed-
backs, and time lags in most global ecosystems; how to elicit
knowledge with and from stakeholders at different levels of
organization (local, regional, national, international), how
to understand the way models fit or do not fit into social
and political processes; and how to communicate model
uncertainty to non-specialists.
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B. Moore III, and C.J. Vörösmarty, 1992: Interactions between carbon and
nitrogen dynamics in estimating net primary productivity for potential vege-
tation in North America. Global Biogeochem. Cycles, 6(2), 101–124.

McGuire, A.D., S. Sitch, J.S. Clein, R. Dargaville, G. Esser, J. Foley,
M. Heimann, F. Joos, J. Kaplan, D.W. Kicklighter, R.A. Meier, J.M. Melillo,
B.I. Moore, I.C. Prentice, N. Ramankutty, T. Reichenau, A. Schloss,
H. Tian, L.J. Williams, and U. Wittenberg, 2001: Carbon balance of the
terrestrial biosphere in the twentieth century: Analyses of CO2, climate and
land use effects with four process-based ecosystem models. Global Biogeochem-
ical Cycles, 15(1), 183–206.

McMichael, A.J., D.H. Campbell-Lendrum, C.F. Corvalán, K.L. Ebi, A. Gi-
theko, J.D. Scheraga, and A. Woodward, 2003: Climate change and human
health: risks and responses. World Health Organization, Geneva. 250pp.

McMichael A.J., R. Chamber, K. Chopra, P. Dasgupta, A. Duraiappah,
W. Niu, and C.D. Butler, 2003: Ecosystems and Human Well-being. In:
People and Ecosystems: A Framework for Assessment and Action, Millennium Eco-
system Assessment. Island Press, Washington, DC.

PAGE 112

Meadows, D.H., D.L. Meadows, J. Randers, and W.W. Behrens, 1972: The
Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of
Mankind. Universe Books, New York.

Meadows, D.H., D.L. Meadows, and J. Randers, 1992: Beyond the limits: Con-
fronting global collapse, envisioning a sustainable future.

Mertens, B., and E. F. Lambin, 1997: Spatial modeling of deforestation in
southern Cameroon. Applied Geography, 17(2), 143–62.

Mesarovic, M., and E. Pestel, 1974: Mankind at the Turning Point: The Second
Report of the Club of Rome. Dutton, New York.

Messner, S. and M. Strubegger, 1995: User’s Guide for MESSAGE III. WP-95-
69, International Institute for Applied Systems Analysis, Laxenburg, Austria,
155 pp.

Metz, B. Davidson, O., Swart, R., and Pan, J. (2001). Climate Change 2001:
Mitigation. Cambridge University Press. Cambridge.

Meyers, W.H., S. Devadoss, and M. Helmar, 1986: Baseline projections, yields
impacts and trade liberalization: Impacts for soybeans, wheat, and feed grains: A
FAPRI trade model analysis. Center for Agricultural and Rural Development
(CARD), Iowa State University, Ames, IA.

Midgley, G.F., L. Hannah, D. Millar, M.C. Rutherford, and L.W. Powrie,
2002: Assessing the vulnerability of species richness to anthropogenic climate
change in a biodiversity hotspot. Global Ecology and Biogeography, 11, 445451.

Mintzer, I., 1987: A matter of degrees: The potential for controlling the green-
house effect. Research Report 5, World Resources Institute. Washington
D.C.

Mitchell, D.O., M.D. Ingco, and R.C. Duncan, 1997: The World Food Outlook.
Cambridge University Press, New York.

Moore A.B., A.R. James, P.C. Sims, and G.K. Blackwell, 2001: Intelligent
Metadata Extraction for Integrated Coastal Zone Management. Proceedings
of GeoComputation 2001, University of Queensland, Brisbane, Australia,
ISBN 18664995637 (available at http://www.geocomputation.org/2001/
papers/moore.pdf )

Moore, J.K., S.C. Doney, J.A. Kleypas, D.M. Glover and I.Y. Fung, 2002a: An
intermediate complexity marine ecosystem model for the global domain.
Deep-Sea Research II, in press.

Moore, J.K., S.C. Doney, J.A. Kleypas, D.M. Glover and I.Y. Fung, 2002b:
Iron cycling and nutrient limitation patterns in surface waters of the world
ocean, Deap-Sea Research II, in press.

Morita, T., Y. Matsuoka, M. Kainuma, and H. Harasawa, 1994: AIM—Asian
Pacific integrated model for evaluating policy options to reduce GHG emis-
sions and global warming impacts. In Global Warming Issues in Asia, S. Bhatta-
charya et al. (eds.), AIT, Bangkok, pp. 254–273

Morris, W. and D. Doak, 2002: Quantitative Conservation Biology. Sinauer Pub-
lishers, MA, 480 pp.

Mosier, A., C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. van
Cleemput, 1998: Closing the global atmospheric N2O budget: Nitrous oxide
emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroeco-
systems, 52, 225–248.

Najjar, R.G., and J. Orr, 1998: Design of OCMIP-2 simulations of chlorofluo-
rocarbons, the solubility pump and common biogeochemistry, http://
www.ipsl.jussieu.fr/OCMIP/phase2/simulations/design.ps, 19 pp.
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