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Legacies are well-known as key factors in many scien-
tific disciplines. Ecologists, for instance, recognize

the importance of previous-year precipitation on current-
year net primary production (Sala et al. 2012). Likewise,
natural resource managers and environmental scientists
recognize the importance of legacies on ecosystem struc-
ture and function (Foster et al. 2003), while anthropolo-
gists are familiar with the effects of historical land use on
current vegetative patterns (Figure 1).

Scientists from numerous disciplines also acknowledge
the role of legacies in the following triad: “environment
’ processes ’ properties” (eg Birkeland 1999; Turner et
al. 2001). In drylands, ecologists, soil scientists, and geo-
morphologists have shown that environmental con-

ditions govern processes that, in turn, generate proper-
ties. Examples include rainfall ’ photosynthesis ’ net
primary production (in ecology); vegetative cover ’
organic matter accumulation ’ pH (in soil science); and
mountain building ’ erosion ’ landforms (in geomor-
phology). The “environment ’ processes ’ properties”
triad can also be investigated in reverse to understand
paleoenvironments (eg Targulian and Goryachkin 2004).
Such studies have shown that some properties have better
“memories” than others. For example, the 13C/12C ratio in
soil organic matter in a shrubland may “remember” a for-
mer grassland, but its memory will fade more quickly than
the 13C/12C ratio in carbonate minerals of that same soil
(Monger et al. 2009).

n The emerging legacy paradigm

Legacies in drylands occur across disciplines and scales,
and are a function of three variables: (1) the magnitude
of the historical phenomenon, (2) the time elapsed since
its occurrence, and (3) the sensitivity of the ecological–
soil–geomorphic system to change (Rachal et al. 2012;
Sala et al. 2012; Monger and Rachal 2013). Feedbacks
within an “ecogeomorphic” system are illustrated in the
following three examples and summarized in a conceptual
model (Figure 2). (1) In a semi-desert region of southern
New Mexico, overgrazing by domestic cattle resulted in
selective herbivory of grasses, giving unpalatable shrubs a
competitive advantage (Buffington and Herbel 1965).
Eventually forced to eat the pods of mesquite (Prosopis
spp), cattle also became an agent of seed dispersal, which
led to greater abundance of mesquite shrubs and areas of
bare ground that are typically larger between shrubs than
between grasses. The increased bare ground promoted soil
erosion (gully cutting in the case of water erosion and
removal of silt, sand, and fine particles of organic matter
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in the case of wind erosion), thus altering topography. (2)
In the Mojave Desert, the topography was altered by the
construction of a railroad line that acted as a barrier to
water moving downslope. The barrier enhanced water
capture upslope along the railroad and reduced the
amount of water available to vegetation downslope of the
line (Schwinning et al. 2010). When framed in terms of
the conceptual model (Figure 2), the railroad line
affected the lateral redistribution of water, changing soil
moisture, which resulted in a higher density of vegetation
(Larrea tridentata) in areas with enhanced water on the
upslope side of the railroad. In contrast, areas with
reduced water levels downslope of the railroad saw a shift
in plant community to a drought deciduous species

(Ambrosia dumosa). (3) In the Ebro Valley of Spain, one
of the driest regions in Europe, the soil itself creates
changes in soil climate. Differences in soil moisture occur
along the perimeters of polygonally shaped plates that
form in periodically flooded playa lakes (Dominguez-
Beisiegel et al. 2012). The cracks between the plates hold
greater soil moisture, which allows the glaucous glasswort
(Arthrocnemum macrostachyum) to germinate there,
adding more propagules, increasing organic matter, and
changing the soil properties along the edges of the plates.

n Continuum of spatial and temporal scales

Spatially, ecological–soil–geomorphic legacy effects can
be seen from continental to experimen-
tal-plot scales. At the continental scale,
the dry climate that creates the
Chihuahuan Desert of North America is
a legacy effect of mountain ranges that
deplete the moisture in air masses com-
bined with its 30˚-latitude location
resulting from plate tectonics (Figure 3a;
Schmidt 1979). At the physiographic
scale, a piedmont slope is a legacy effect
of sediments deposited along the fronts
of uplifted mountains (Figure 3b; Seager
1981). Sand sheets at the landscape scale
are a legacy of sand movement along the
prevailing wind direction (Figure 3c;
Gile 1999). At the finer landform scale,
crescent-shaped banded vegetation is a
legacy of wind-blown sand interacting
with sediments carried downslope by
water (Figure 3d; Weems and Monger
2012). Finally, plot-scale studies have
shown that hydrologically enhanced
zones of grass productivity are a legacy
left by the construction of dikes that cap-
ture flowing water and sediments (Figure
3e; Rango et al. 2006). 

Temporally, ecological–soil–geomor-

Figure 1. Ruins associated with a Roman–Byzantine-era farm near the ancient city of Shivta in the Negev Desert, an example of
water harvesting techniques that have created a legacy effect on the desert landscape. Though long abandoned, the ancient structures
still capture runoff water as reflected by lush seasonal vegetation.

Figure 2. Conceptual framework showing linkages between ecological (animals and
vegetation), soil, and geomorphic (topography and parent material) factors and
processes, and their interactions with microclimate in dryland systems. The
interactions altered by cattle overgrazing are shown in red; black arrows highlight
interactions that are still present, but less affected by overgrazing (after Monger and
Bestelmeyer 2006).



C Monger et al. Legacy effects in drylands

15

© The Ecological Society of America www.frontiersinecology.org

phic legacies can be seen from millennial to
diurnal scales (Table 1). In the next section,
we provide examples – organized along
timescales from the very short to the very
long – that were developed under different
disciplines but are grouped here within the
same conceptual framework. 

Short term (days to months)

Ecological legacy – stomatal conductance

Stomatal conductance is a short-term legacy
from prior rainfall that may persist when
plants are rewetted after a prolonged
drought, leading to “memory” of past rainfall
events. Stomatal conductance in the grass
Bouteloua gracilis in a semi-arid shortgrass
steppe in Colorado, for example, remained
relatively low for one week after the end of
such a drought (Sala et al. 1982). Leaf water
potential in the same system recovered
quickly, however, suggesting that legacy
effects maintain control over stomatal behavior. Similar
effects were reported in a semi-arid grassland in Arizona.
There, following a precipitation pulse, stomatal conduc-
tance took 1–15 days to reach maximum values (Ignace
et al. 2007); this is because, during drought periods, plants
accumulate abscisic acid, which limits stomatal aperture
even after turgor pressure recovers (McAinsh et al. 1990).

Soil legacy – soil moisture

Soil horizons serve as reservoirs that retain water and
buffer vegetation against low and variable precipitation
(eg Duniway et al. 2010; Mahmood and Vivoni 2014).
Thus, soil moisture at a given point in time can be viewed
as a legacy of previous meteorological and biological
processes (eg Gutierrez-Jurado et al.
2013). Depending on these inter-
acting and often conflicting
processes, the legacy effects of soil
moisture can range from hours to
months (Figure 4).

Geomorphic legacy – impacts of
roads

Road networks within dryland
areas alter surface hydrology and
concentrate overland flows (Duni-
way and Herrick 2011). Roads run-
ning across a slope (ie with eleva-
tion contours) can divert water
laterally, releasing the flows
through cross-drains and creating
erosion downslope of the roads.
Similarly, roads running with the
slope (ie longitudinally) tend to
capture, concentrate, and alter

overland flow. This concentration of dispersed overland
flow can change geomorphic processes related to hydrol-
ogy and sediment transport, thereby generating legacy
effects (Figure 5).

Medium term (years to decades)

Ecological legacy – precipitation

Sala et al. (2012) characterized medium-term legacies of
precipitation in drylands as the negative effect of a
drought event after the drought is over or as the positive
effect of an extremely wet event after it has occurred.
Medium-term legacy responses of aboveground net pri-
mary production (ANPP) are estimated as the difference

Figure 3. Examples of legacy effects at progressively finer spatial scales. Image
data provided by Google, Image Landsat, INEGI, © 2014.

Table 1. Examples of legacy effects and their antecedent environmental factors
operating at short-, medium-, and long-term timescales in dryland landscapes

Ecological Soil Geomorphic

Soil moisture ’ Rainfall ’ Road construction ’

stomatal conductance soil moisture recharge altered overland flow

Fire ’ Diurnal solar cycles ’ Strong winds ’
shrub mortality soil temperature change dust storms

Drought episodes ’ Herbaceous to woody ’ High aeolian deposition ’

net primary production more heterogeneous soil coppice dune formation
organic matter

Gasoline combustion ’ Improper irrigation ’ Bare ground ’

nitrogen fertilization salinity and sodicity gully networks

Climate change ’ Cultivated agriculture ’ Water harvesting ’
biome migration topsoil loss dune stabilization

Paleo-Indian overkill ’ Climate change ’ Climate change ’
faunal extinctions soil CaCO3 dissolution fluvial base-level

Notes: Words in italics represent environmental conditions; the arrows point toward the effect on ecological, soil, or
geomorphic legacies (in bold).
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between observed ANPP and expected ANPP, which is
calculated based on current precipitation and a long-term
precipitation–production relationship. Positive legacies
result when observed ANPP is higher than expected
ANPP; this type of legacy occurs during the transition
from wet to dry conditions. Negative legacies result when
observed ANPP is lower than expected ANPP during dry
to wet transitions, such as the observed lags in ecosystem
responses in a Chihuahuan Desert grassland experiment
(Reichmann et al. 2013). Legacy magnitude was linearly
proportional to the difference in annual precipitation
between the current year and the previous year.
Moreover, the magnitude of a negative legacy was
inversely equivalent to the magnitude of a positive
legacy. Legacies account for an important fraction of

annual primary production. In the Chihua-
huan Desert grasslands, legacies represent
20% of annual net primary production, with
the density of tillers (lateral shoots character-
istic of grass species) identified as the mecha-
nism promoting legacies in this ecosystem
type (Reichmann and Sala 2014). Tiller den-
sity at the beginning of the growing season
was determined by the precipitation or pro-
duction levels in the previous year and
shaped the ecosystem’s ability to utilize avail-
able water. A previous dry year results in low
tiller density, which constrains production,
whereas a previous wet year yields high tiller
density, which enhances production.

Soil legacy – changes in vegetation and
soil organic carbon

Spatial distribution of soil organic carbon
(SOC) typically changes as shrubs advance
into and replace grasslands. For example,

SOC accumulates over time as woody plants grow and
deposit above- and belowground litter and root exudates.
Following woody plant mortality, slow declines in SOC
mirror the slow accretion rate under live plants, which
creates strong legacy effects on organic carbon that may
persist for decades (Throop and Archer 2008). For
instance, elevated levels of SOC persisted for at least 40
years after aerial herbicide applications to remove velvet
mesquite (Prosopis velutina) in a semi-desert grassland in
Arizona (McClaran et al. 2008).

Geomorphic legacy – formation of coppice dunes

Coppice dunes are dome-shaped mounds of sand, 0.5–2 m
in height, that form when wind-blown sand accumulates
around shrubs such as honey mesquite (Prosopis glandu-

losa), which continue to grow upward with the
rising sand. In many dryland areas of the US
Southwest, coppice dunes have resulted from
overgrazing and drought that caused topographi-
cally uniform perennial grasslands to convert to
steep-sided dunes separated by bare ground
(Buffington and Herbel 1965; Gile 1966).
However, coppice dunes can form in any dryland
where aeolian (wind-driven) sand movement is
pronounced and shrubs are available to trap the
sand; in addition to the US Southwest, such areas
include deserts in China, the Middle East, and
Africa (eg Dougill and Thomas 2002; Saqqa and
Atallah 2004; Wang et al. 2006).

Long term (centuries to millennia)

Ecological legacy – biome migration driven by
climate change

Over long timescales, imprints of the cooler and
wetter Pleistocene climate in much of the now

Figure 4. Soil moisture as a short-term legacy effect of rainfall events. Data
are daily measurements of volumetric soil moisture in a loamy sand soil at the
Jornada LTER in southern New Mexico. Rainfall events are shown as inverted
black vertical lines. Note the more effective wetting during winter rainfall in
contrast to summer when evapotranspiration is greater.

Jan  Feb Mar  Apr May Jun Jul   Aug Sep  Oct  Nov  Dec

Figure 5. Short-term geomorphic legacy effect created by roads and houses
superimposed on a drainage network on a piedmont slope in southern New
Mexico. Image data provided by Google, INEGI, © 2014.
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hot and dry US Southwest can be observed as
topographic characteristics, such as hillslope pro-
file and channel drainage network density (Istan-
bulluoglu et al. 2008; Gutierrez-Jurado and Vivoni
2013). In some regions, banded vegetation has
also been interpreted as the legacy of a different
climate (Weems and Monger 2012). Similarly,
some black grama (Bouteloua eriopoda) grasslands
have been described as vestiges of the Little Ice
Age (ca 1500–1850 CE; Neilson 1986), with
soaptree yucca (Yucca elata) representing a rem-
nant species from that slightly cooler and moister
climate (Figure 6).

Soil legacy – topsoil loss from ancient land use

Dryland sites within the Mediterranean Basin
offer a prime example of erosion caused by inten-
sive land use over millennia (García Badell 1951;
Hughes and Thirgood 1982; Boixadera et al.
2014). Since ancient Roman times, the mainte-
nance of historical crops (eg grape vines, olive
trees) necessitated a weed-free (bare) soil surface,
which was vulnerable to erosion; this was main-
tained by repeated plowing (Butzer 2005).
Erosion subsequently impoverished the soil, caus-
ing thinning of the fertile soil horizons and degra-
dation of soil structure. Consequently, many con-
temporary grape vines and olive trees now grow in
shallow, organic-poor soils with reduced water-
holding capacity. To counterbalance such erosion,
farmers historically built stone-wall terraces,
thereby illustrating another long-term soil legacy.
These stone-wall terraces have been documented
in the Mediterranean Basin since the Bronze Age
(Asins-Velis 2006) and, where properly main-
tained, have allowed full use of the land for agri-
culture without noticeable erosion. When used
extensively, such terraces contribute to important
changes in soils by slowing erosion and accumu-
lating soil through sediment retention (Roquero 1964).
The result is a soil with greater rooting depth and water-
holding capacity. From a hydrological point of view,
stone-wall terraces impede overland flow and create satu-
ration areas, changing the hydrological network and
reducing runoff (Abu Hammad et al. 2004). During
intense storms, these terraces can even encourage satura-
tion flow by capturing water that would otherwise run off
without infiltrating the soil (Gallart et al. 1994). For
instance, a large part of the semi-arid area of Les
Garrigues, in southwestern Spain, is composed of stone-
wall terraces, which date from the 18th century and are
linked to the expansion of olive cultivation.

Geomorphic legacy – dune stabilization by ancient
infrastructure

The Negev Desert and the broader Levant witnessed a
thousand-year Hellenistic–Roman–Byzantine contin-

uum, characterized by intense development of water col-
lection and storage infrastructures. This infrastructure
allowed commercial caravans, composed of people and
beasts of burden, to travel along established routes dotted
by natural springs and water cisterns, fortresses, and inns.
It also permitted the subsequent development of thriving
permanent settlements, based partly on agriculture.
Understanding the interactions between water and soils
enabled the development of dry riverbed terracing that
retained floodwater long enough to allow its slow perco-
lation underground. Where water flows, soil comes with
it; terrace soil gradually deepened to allow a diversifica-
tion of and transition in crops, from wheat and barley to
grape vines and pomegranates, and then to larger trees
with bigger root systems. By continuing to contain runoff
water, the terraces acted as a flood-control system, slow-
ing erosion and gully incision processes (Avni et al.
2013). This also encouraged the continuous growth of

Figure 6. Soaptree yuccas (Yucca elata) as a relict species (ie legacy) of
former climatic and vegetative conditions (Dick-Peddie 1993). (a)
Soaptree yuccas as a subdominant species in an intact grassland. (b) Yucca
in an area that was formerly a grassland, according to vegetation maps
from the 1920s.

(a)

(b)
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dense vegetation that, in turn, prevented the intrusion of
sand dunes into settlements (Issar 1990). 

n Conclusions

Desert ecologists have long recognized the importance of
abiotic factors in dryland systems. Likewise, desert geo-
morphologists and pedologists have widely acknowledged
the necessity of integrating biotic factors into their mod-
els. The concept of legacy effects adds to our knowledge
about the tight linkages between these systems and
enables researchers to understand current processes and
properties in the context of past environments. Although
legacy effects have been primarily of academic interest,
the pervasive signature of past conditions in dryland veg-
etation patterns, soil properties, and landscape features
has highlighted the importance of legacy effects in dry-
land management as well. It is very useful to know an
ecosystem’s past to properly manage for its future
(Swetnam et al. 1999; Bestelmeyer et al. 2003, 2015;
Foster et al. 2003). 
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Call for contributions
Got a cool or unusual natural history photo with an interesting or important message behind it? Write it up
and send it to Frontiers for consideration in the upcoming new series, Natural History Notes.

There have been many recent calls for a renewed interest in natural history. If we don’t know about the
organisms around us, how can we understand and address the challenges they face in terms of climate
change, pollution, habitat fragmentation, urbanization, exotic invaders, and more?

Not just a pretty photo! We are specifically looking for natural history images, taken in the field, that:

• Illustrate a rare, unusual, or fascinating organism, behavior,
process, or other natural phenomenon 

• Describe something new or important in ecology,
conservation, phenology, or human–environment interactions

• Represent a scientific “aha” or “wow” moment in your own research

• Help to teach a key ecological concept 

• Inspire and engage us in natural history

Send your high-resolution photo and accompanying 1200-word text, 
explaining what it is, what it means, and why it is important and/or 
interesting, to Frontiers Editor-in-Chief Sue Silver (suesilver@esa.org) 
for possible inclusion in this exciting new series. 

Presubmission inquiries welcome.

Great new series coming soon in Frontiers
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