
Overview Article

https://academic.oup.com/bioscience  September 2018 / Vol. 68 No. 9 • BioScience   653   

An Integrated View of Complex 
Landscapes: A Big Data-
Model Integration Approach to 
Transdisciplinary Science

DEBRA P.C. PETERS, N. DYLAN BURRUSS, LUIS L. RODRIGUEZ, D. SCOTT MCVEY, EMILE H. ELIAS,  
ANGELA M. PELZEL-MCCLUSKEY, JUSTIN D. DERNER, T. SCOTT SCHRADER, JIN YAO, STEVEN J. PAUSZEK, 
JASON LOMBARD, STEVEN R. ARCHER, BRANDON T. BESTELMEYER, DAWN M. BROWNING, COLBY W. BRUNGARD, 
JERRY L. HATFIELD, NIALL P. HANAN, JEFFREY E. HERRICK, GREGORY S. OKIN, OSVALDO E. SALA,  
HEATHER SAVOY AND ENRIQUE R. VIVONI

The Earth is a complex system comprising many interacting spatial and temporal scales. We developed a transdisciplinary data-model 
integration (TDMI) approach to understand, predict, and manage for these complex dynamics that focuses on spatiotemporal modeling and 
cross-scale interactions. Our approach employs human-centered machine-learning strategies supported by a data science integration system 
(DSIS). Applied to ecological problems, our approach integrates knowledge and data on (a) biological processes, (b) spatial heterogeneity in 
the land surface template, and (c) variability in environmental drivers using data and knowledge drawn from multiple lines of evidence (i.e., 
observations, experimental manipulations, analytical and numerical models, products from imagery, conceptual model reasoning, and theory). 
We apply this transdisciplinary approach to a suite of increasingly complex ecologically relevant problems and then discuss how information 
management systems will need to evolve into DSIS to allow other transdisciplinary questions to be addressed in the future.
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Unanticipated ecological changes and humans’   
 inability to quickly mitigate or adapt to them have caused 

significant socioeconomic disruptions. Examples include the 
Dust Bowl of the 1930s; Hurricanes Harvey, Irma, and Maria 
in 2017; and disease outbreaks, including Zika and dengue 
(MEA 2005, Jones et al. 2008, Peters et al. 2008, Carpenter 
et  al. 2009). These “ecological surprises” often result when 
biological processes, spatial heterogeneity in land surface 
properties, and environmental drivers interact across spatial 
and temporal scales to influence multiple levels of biological 
organization that can lead to alternative states of the system 
(Bestelmeyer et al. 2011, Johnson et al. 2015). Examples of 
events governed by cross-scale interactions include wild-
fires that start small (ignition of an individual tree) and 
spread to encompass increasingly broader spatial extents 
as a series of thresholds are crossed when dominant pro-
cesses change through time (Peters et al. 2004a). For other 
surprising events, such as floods, volcanic eruptions, and 
hurricanes, the high-intensity impact of the environmental 

driver is applied over a broadscale to overwhelm fine-scale 
heterogeneity in land-surface properties and biological pro-
cesses that homogenizes impacts and responses over large 
areas (Brokaw et al. 2012). Heterogeneity can subsequently 
redevelop as environmental drivers act on the underlying 
landscape template (Romme et al. 2016) or subtle changes in 
one or more drivers can cause dramatic, nonlinear responses 
that can be difficult or impossible to reverse if thresholds are 
crossed (Fagre et al. 2009). Such changes are often unantici-
pated because the sequencing and patterns of events, their 
intensity of impact, or rate and pattern of spread and recov-
ery lack historical precedent (Nadeau et al. 2017).

Ecologists, biologists, and Earth-system scientists are 
increasingly being asked to predict the occurrence of such 
events, minimize their negative impacts, and promote  system 
recovery. However, predictions and management recom-
mendations are often based on knowledge of a select subset 
of system components or by extrapolating data from other 
locations or previous time periods (e.g., grazing management 
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in the American Southwest in the late 1800s was based on 
European and midwestern approaches with catastrophic 
results; Bestelmeyer et  al. 2006). Extrapolations based on 
such simplifications and assumptions are further compro-
mised and invalidated when (a) a new driver is introduced, 
such as an exotic species, or a key biological component is 
ignored (Young et  al. 2017); (b) nonlinear and cross-scale 
interactions result in unanticipated emergent behavior that 
differs from dynamics of individual components or earlier 
time periods (Peters et  al. 2004a, Soranno et  al. 2014); (c) 
spatial processes connect ecosystem components by the 
flow of material, propagules, energy, or information (spa-
tial contagion) to overwhelm local processes (Peters et  al. 
2006, Okin et al. 2015); (d) spatial heterogeneity in the land 
surface template results in variable ecological responses that 
accentuate or dampen environmental driver effects (Seidl 
et al. 2016); (e) legacies, lags, thresholds, and feedback loops 
occur with nonlinear responses to environmental drivers 
to violate linearity assumptions (Bestelmeyer et  al. 2011, 
Collins et  al. 2014); and (f) the mean and extreme values 
of one or more drivers extend beyond their historical range 
of variability (i.e., nonstationarity; Milly et al. 2008). If one 
or more of these conditions occurs, then extrapolation of 
data or results from one location (or time period) to other 
locations (or time periods) can lead to high uncertainty and 
large unexplained error in the results (Miller et  al. 2004, 
Peters et al. 2004b, Dixon Hamil et al. 2016). Thus, alterna-
tive approaches are needed to account for these nonlinear, 
complex dynamics.

New technologies are increasing awareness that the Earth 
is a complex, interconnected system at many spatial and 
temporal scales (Heffernan et  al. 2014). Dynamics at one 
scale can influence or have consequences for scales and 
dynamics of interest to other disciplines through the flow 
of material, energy, or information (Liu et al. 2015). These 
interactions can be increasingly quantified or observed 
directly with recent advances in technology (e.g., Vivoni 
2012). For example, genomics, metagenomics, and micro-
biological techniques reveal fine-scale interconnections 
among soil nutrients, microbial communities, and the plant 
microbiome that explain patterns of adaptation and survival 
observed by plant biologists and ecologists (Wullschleger 
et al. 2015). The importance of scale and interactions among 
scales to emergent ecological dynamics has a long history 
in ecology (e.g., Levin 1992, Gurevitch et al. 2016), but an 
approach that quantifies relationships among processes, pat-
terns, and drivers—within and across scales—for a system 
exhibiting complex dynamics is still needed (Stegen 2018).

Advances in sensors, software, and other infrastructure 
are also allowing more biological and physical processes, 
environmental properties, locations, and time steps to 
be detected, quantified, coordinated, and made accessible 
through the Internet and other sources than at any time in 
history (Hampton et  al. 2013, Michener 2015). Advances 
in big data sharing, analytics, and related open-source soft-
ware tools and plug-ins are facilitating open science across 

disciplines (Hampton et al. 2015). For example, the R statis-
tical language (R Development Core Team 2017) consoli-
dates a variety of user-contributed packages in one coherent 
data analysis environment; similarly, proprietary software 
(e.g., the ArcGIS suite of geospatial software) can be used to 
collate disciplinary contributions into an integrated frame-
work (e.g., Brown 2014).

New technologies are also supporting the need for a 
transdisciplinary research approach to understand, predict, 
and manage for these complex dynamics (Plowright et  al. 
2008, Reid et  al. 2010). For example, understanding the 
multidimensional aspect of dengue spread requires collabo-
ration among physicians, epidemiologists, and ecologists 
(Vasilakis et al. 2011). Although data availability and open 
science within disciplines is increasing (Hampton et  al. 
2013, Soranno et al. 2014), there is an urgent need for cross-
disciplinary collaboration among scientists to integrate and 
leverage existing data and understanding of processes to 
inform the strategic collection of new data, to guide manage-
ment in undersampled locations, and to better predict future 
conditions so as to minimize ecological surprises and their 
impacts (Reid et al. 2010, NASEM 2016).

We propose that recent advances in technologies and 
an emphasis on data and metadata standards and sharing 
within and across disciplines have positioned ecologists 
to reduce the probability of future ecological surprises. 
Our goal was to develop an operational transdisciplinary 
approach that accommodates and facilitates integration of 
large and diverse types of data and knowledge to (a) reduce 
the high spatial heterogeneity in sampling frequency, inten-
sity, and quality across the surface of the Earth and fill data 
or knowledge gaps for underrepresented locations; (b) char-
acterize the nonstationarity of environmental drivers and 
ascertain the extent to which knowledge of the past can or 
cannot inform the future; and (c) inform land managers and 
others in prioritizing locations.

Our transdisciplinary data-model integration (TDMI) 
approach combines software technologies in human-assisted 
machine learning to optimize the efficiency of the scien-
tific method with recent advances in analyses of big data, 
including multimodel comparisons, multivariate dimension 
reduction, and machine-learning techniques, with data and 
knowledge from domain experts and other multiple lines of 
evidence (figures 1 and 2). The approach is supported by a 
data science integrated system (DSIS), in which data from 
long-term observations and experimental manipulations, 
output from analytical and numerical models, and prod-
ucts from sensors and imagery products, are standardized 
and harmonized to promote integration. As applied to the 
specific problems that we study, ecological dynamics in dry-
lands, we sought to extend point- or plot-based understand-
ing to landscape, watershed, and regional scales in order 
to improve land management and prediction capabilities. 
To accomplish this, our approach integrates biological pro-
cesses and associated patterns at multiple scales, spatial het-
erogeneity in the land surface template, and environmental 
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drivers using data and knowledge drawn from multiple 
lines of evidence across multiple spatiotemporal scales. Our 
TDMI approach goes beyond extrapolation, which typically 
relies on projecting or extending observations into unknown 
locations (Turner et  al. 1989). We focus on functional 
responses at multiple, interacting scales that link patterns 
and processes, and allow processes to propagate across scales 
of spatial heterogeneity (Cadenasso et al. 2007, Peters et al. 
2007); flows of material within and among spatial units can 
overwhelm or attenuate local processes (Okin et  al. 2015). 
Relationships are developed between observed pattern and 
underlying processes within each scale, and the pattern-
process relationships connect scales to provide a mechanis-
tic understanding of dynamics that extend across scales in 
space or time and lead to cross-scale emergence (Peters et al. 
2007, Heffernan et al. 2014).

We apply this approach to a suite of increasingly com-
plex ecologically relevant challenges that culminate in the 

development of the TDMI approach. Our first example is a 
simple issue to demonstrate the following concepts: (a) local 
dynamics: primary production in wet versus dry periods—
then build in complexity with expanding spatial extent 
to illustrate the analytical techniques; (b) landscape-scale 
dynamics: Great Plains agroecosystems during historic 
drought—and finally increase the scope of the problem that 
requires an transdisciplinary team of scientists working 
with software engineers; (c) regional- to continental-scale 
dynamics: patterns of animal disease spread across the 
western United States. In these examples, we use readily 
available, standardized data, primarily from Web-based 
sources in our DSIS. These analyses are followed by more 
challenging applications of our approach, wherein we 
address questions that integrate short- and long-term data 
in time and space across a heterogeneous landscape. Many 
of these data originate from independent, investigator-
driven experiments and observational studies with different 
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Figure 1. Conceptual framework for complex systems. Spatial scales are linked by processes that either propagate from 
finer to larger scales (upscaling, red arrows) or overwhelm finer-scale processes and patterns (downscaling, blue arrows). 
Changes in the pattern–process relationships through time within locations can influence dynamics across locations via 
cross-scale interactions. Data needs differ for each spatial scale: for example, local processes and biophysical properties 
at fine scales; maps of spatial patterns in the soil-geomorphic templates, environmental drivers, and spatial processes 
at landscape scales; and broadscale patterns in spatial processes, land surface properties, and environmental drivers 
averaged through time at regional to continental scales. Modified from (Peters et al. 2008).
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motivations, thus making spatial or temporal integration 
challenging.

Transdisciplinary data-model integration approach
Our transdisciplinary data-model integration (TDMI) 
approach is based on a process-based systems approach 
designed to allow spatial contagion and heterogeneity, tem-
poral nonlinearities, cross-scale interactions, and multiple 
levels of organization to be evaluated directly. Scales are 
linked by processes leading to dynamics that can either 
propagate from finer to broader spatial scales (upscaling, 
red arrows) or allow for the transfer of material from larger 
areas to influence and overwhelm processes and patterns at 
finer scales (downscaling, blue arrows; figure 1). Changes 
in environmental drivers and pattern–process relationships 
through time and across space can alter system dynam-
ics within particular locations, and can change dynamics 

across locations and regions. Our approach derives from 
hierarchy theory (Allen and Starr 1985) but accommodates 
cross-scale interactions by identifying conditions wherein 
broadscale drivers overwhelm fine-scale variability and fine-
scale processes propagate nonlinearly to influence broad 
spatial extents (Peters et al. 2004a). These thresholds, feed-
back loops, and nonlinear relationships among patterns and 
processes within and among scales can lead to ecological 
surprises unless cross-scale interactions and multiscale pro-
cesses are accounted for.

Our examples focus on a landscape as the functional unit 
for management decisions. However, the logic of an integrated 
system can be applied to any spatial extent where information 
is available at both finer and coarser scales. Because noncon-
tiguous areas may influence the functional unit of interest via 
the provisioning of materials, information or energy, system 
dynamics at a given location will also depend on the degree 

Figure 2. Developing the conceptual basis of transdisciplinary data-model integration: Primary production in wet versus 
dry periods at local scale. We developed an eight-step framework with relatively simple statistical analyses to explain 
observations of aboveground net primary production at the Jornada that were remarkably higher than expected based on 
previous studies and dryland theory. An iterative approach with human learning (light pink arrow) was used to access the 
long-term Jornada database multiple times to analyze different data sets as different hypotheses about grass demographic 
processes were tested. A simulation model parameterized with additional Jornada data was used to refine the hypothesis 
testing and to guide new experiments to be tested in the field. Dryland theory about the relationship between precipitation 
and primary production was refined on the basis of grass responses in wet periods. See the text for details.
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of connectivity and strength of these exogenous influences 
and how they vary with time and distance.

Developing the conceptual basis of transdisciplinary 
data-model integration: Primary production in wet 
versus dry periods at local scale
We first illustrate how the conceptual basis of the TDMI 
approach was developed to improve understanding of 
local-scale dynamics and to refine ecological theory in 
drylands using a suite of long-term data sets from the 
Chihuahuan Desert Jornada Basin Long Term Ecological 
Research (LTER) site (32.3 °N; 106.4 °W, 1188 m; hereafter, 
the Jornada). Jornada landscapes have transitioned from 

perennial grasslands to dominance by unpalatable, drought-
tolerant, woody plants (Buffington and Herbel 1965). This 
transition exemplifies land transformations in drylands 
globally, and is often accompanied by soil and nutrient 
redistribution that fundamentally changes ecosystem pro-
cesses (e.g., Eldridge et al. 2011). More recently, transitions 
from shrublands toward grasslands and novel ecosystems 
are challenging traditional paradigms (Peters et  al. 2015). 
Consequently, concepts and theories of state change dynam-
ics, uncertainties under global change, and macrosystems 
dynamics (Bestelmeyer et al. 2011, Sala et al. 2012), are more 
pertinent to these landscapes than desertification dynamics 
(Reynolds and Stafford-Smith 2002).

Figure 3. Developing the analytical basis of transdisciplinary data-model integration: Landscape-scale dynamics in Great 
Plains agroecosystems during historic drought. We used the eight-step framework from figure 2 and developed more 
detailed computational and statistical analyses beginning in step 4 that include human-guided machine learning (light 
blue arrow) as well as multivariate analyses, maximum entropy, and multimodel comparisons. In this example, all data 
were obtained from federated US government sources available on the Internet. The data were first standardized in space 
and time (county and water year) and then harmonized to the same projection system before statistical analyses were 
conducted. The results suggested that the western portion of the tallgrass prairie shifted toward the southern mixed-grass 
prairie during the 1930s drought and shifted back toward tallgrass prairie after the drought (Burruss et al. 2017). Theory 
about ecotonal boundaries between potential natural grasslands can be refined to be dynamic in response to and recovery 
from extreme, multiyear drought. This example provides guidance on the data harmonization, multivariate analysis, 
and multimodel comparison techniques, as well as the role of expert oversight at each step needed for complex regional 
analyses. See the text for details.
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Our first step was to graph long-term observations of grass 
aboveground net primary production (ANPP) in degraded 
shrublands at the Jornada as a function of annual pre-
cipitation (PPT; figure 3a). In step 2, we expected that grass 
would be a linear function of PPT based on dryland theory 
(Noy-Meir 1973) and empirical studies from other sites (e.g., 
Sala et al. 1988, 2012; see our figure 3b). Because long-term 
Jornada data did not fit the expected pattern (figure 3a, red 
circle and blue triangles), we sought alternative mechanistic 
explanations. A closer examination of PPT records revealed 
that unusually high ANPP values corresponded to a 5-year 
period of high rainfall (figure 3c.i, blue circle; Peters et  al. 
2012). In step 3, we used this pattern to generate hypoth-
eses pertaining to demographic processes underlying grass 
recovery that we evaluated in step 4 using multiple long-term 
data sets on grass recruitment. In steps 5 and 6, our analyses 
and results showed that the nonlinear ANPP response could 
not be explained by seed production, seed germination, 
or seedling establishment (Peters et  al. 2014b). In iterative 
accesses of the databases, we hypothesized that increases in 
litter cover associated with increases in perennial grass and 
other herbaceous biomass would reduce evaporation losses 
and create a positive feedback to increase plant available 
water (PAW) to grasses. Additional data from another study 
in the same location supported this hypothesis by finding 
abrupt and nonlinear increases of biomass and litter (figure 
3c.ii), and a significant relationship between previous year’s 
herbaceous biomass and current year’s grass ANPP during 
the wet period (figure 3c.iii). We then used a soil water simu-
lation model (SOILWAT; Peters et al. 2010) to examine the 
mechanistic underpinning for our hypothesis. We conducted 
two simulations with the same input conditions, except 
one had additional inputs of herbaceous biomass and litter 
comparable to those that occurred in 2004–2008 (with feed-
back mechanisms). Because the simulations with increased 
biomass and litter resulted in an increase in PAW (and tran-
spiration; figure 3c.iv), we have a new hypothesis that can be 
field-tested in step 8 as a mechanism for grass recovery in wet 
periods. In addition, we concluded that although the linear 
relationship between annual PPT and ANPP holds for shrub-
lands during relatively dry and no trend rainfall periods, a 
new understanding of nonlinear dynamics and refinement 
of theory is needed in wet periods that accounts for grass 
establishment and growth over several years (step 7). This 
new understanding was made possible by a team of ecolo-
gists, their collective understanding of relevant processes, the 
availability of multiple long-term data sets from one location 
at the Jornada, and a small set of tools (regression analyses, 
simulation model). More importantly, the sequence of steps 
in developing the pattern–process relationships in our con-
ceptual model (observe pattern → generate hypothesis → 
test hypothesis → develop conceptual model → access data 
base ⇔ develop relationships ⇔ identify new hypotheses 
→ refine theory) with iteration and human learning among 
steps (shown as pink arrows in figures) became part of the 
approach employed in our next examples.

Developing the analytical basis of transdisciplinary 
data-model integration: Landscape-scale dynamics in 
Great Plains agroecosystems during historic drought
We next describe how the analytical components of the TDMI 
approach were developed. Here, we sought to determine 
whether boundaries between natural vegetation types are 
static and related to climate and fine-scale patterns in soils, as 
was expected based on ecological theory (e.g., Küchler 1964), 
or are dynamic and related to other factors associated with 
extreme weather. We used historic data during (1933–1940) 
and after (1941–1948) the extreme drought of the 1930s to 
examine potential dynamics in the boundaries between grass-
land types in the central Great Plains of the United States. We 
examined boundaries on potential vegetation maps between 
the tallgrass prairie (TP) and the southern (SMP) or the 
northern mixed-grass prairies (NMP), and between the SMP 
and NMP (figure 4a, step 1). We then developed a conceptual 
model on the basis of ecotones (step 2) and hypothesized that 
boundaries were either related to long-term conditions or 
to variable rainfall and temperature, topographic relief and 
water redistribution, soil texture, and land use (figure 4b, 
step 3). Because this drought predated modern agriculture 
in the United States and the advent of genetic manipulation 
(Hatfield and Walthall 2015), we used historic corn yield (Zea 
mays) as a surrogate for perennial grass production. Data 
obtained from online US government sources for explanatory 
and response variables were standardized in units (county, 
annual), and maps were harmonized to the same projection 
system (step 4; Burruss et al. 2017). In step 5, highly correlated 
variables (p > .70) were identified using univariate statistics 
and subsequently removed from the analysis. Machine learn-
ing and multivariate analyses were used to compare multi-
dimensional relationships. A suite of models consistent with 
our hypotheses was fit to the data. The best model was chosen 
by a combination of quantitative information criterion in 
machine learning and subjective expert opinion (i.e., Fieberg 
and Johnson 2015; see our figure 4c). In step 6, results indi-
cate the western portion of the tallgrass prairie shifted toward 
vegetation characteristic of the southern mixed-grass prairie 
during the drought, then shifted back toward tallgrass prairie 
after the drought (figure 4d). In step 7, we refined our theory 
that the boundaries between natural grassland subtypes are 
dynamic and responsive to extreme climatic events. From our 
TDMI perspective, this example illustrates how data harmo-
nization and multivariate analysis with human learning, and 
multimodel comparisons with machine learning and expert 
oversight can be integrated for complex landscape to regional 
analyses. Machine learning is shown as light blue arrows in 
all figures.

Developing a transdisciplinary team and a data 
science integrated system: Regional- to continental-
scale dynamics in the patterns of animal disease 
spread across the western United States
In our third example, we describe how we develop a trans-
disciplinary team and a DSIS in the TDMI to identify and 
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analyze the environmental factors and biological processes 
explaining the invasion of North America by vesicular 
stomatitis (VS) virus, a vector-borne, zoonotic RNA virus 
that affects livestock. Vesicular stomatitis is a reportable 
disease for national and international trade reasons, and a 

database exists beginning in the year 2000 (www.aphis.usda.
gov). We used this data set within our TDMI approach to 
explore the complexity of the VS disease system (vector–
host–virus–environment), and to identify the processes and 
environmental variables governing its spatial or temporal 

Figure 4. Developing a transdisciplinary team in transdisciplinary data-model integration: Regional- to continental-
scale dynamics in the patterns of animal disease spread in the western United States. We developed a geospatial, iterative 
framework with human and human-guided machine learning based on the eight steps in figure 2 and the computational 
analyses in figure 3. We used this framework as a predictive approach to integrate large amounts of diverse data in an 
attempt to explain multiyear patterns in the occurrence of vesicular stomatitis (VS), a vector-borne disease in livestock that 
occurs across the western United States. Vesicular stomatitis cannot be explained by one or a few biophysical or climatic 
factors. We enhanced the eight steps from figures 2 and 3 by adding the formation of a transdisciplinary team as part of 
the initial step and developing a systems diagram (figure 5) as part of step 2. This diagram was needed to show how the 
processes are related to each other and to their environment (yellow boxes and details in figure 5) before the hypotheses 
could be generated and variables selected in step 3. The next enhancement was the use of a series of linked pattern–process 
relationships (i.e., ecotransfer functions) based on the systems diagram combined with data on vector and host responses 
to their environment and environmental data to develop new hypotheses. This process in step 3 also identified the 
variables to be selected for analysis from the many possible variables in an environmental driver data set. These data then 
underwent standardization and harmonization that required close collaboration among scientists and software engineers 
to ensure that the most appropriate data sets and calculations were used for each variable. This iterative human-learning 
procedure ensured that data sets or calculations were examined for accuracy, reliability, and comparability with other 
data sets. A suite of analyses was then conducted depending on the spatial and temporal scale of the question that included 
human-learning and human-guided machine-learning techniques involving feedback with the transdisciplinary team. See 
the text for details. This example shows the development of the transdisciplinary approach with mostly federated data that 
are accessible on the Internet. The data sets within each driver type (blue boxes) have been standardized and harmonized 
to each other; the challenge is harmonizing across the different types of data sets that are guided by the question.
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patterns. Use of the TDMI in this context would test its util-
ity in transdisciplinary, continental-scale complex systems 
in which diverse data and knowledge are available but not 
integrated.

Vesicular stomatitis is the most commonly reported live-
stock vesicular disease in the Americas (Rodríguez 2002), 
occurring in greater than 1.1 million square kilometers 
(km2) of the western United States from 2004 to 2016. In 
ruminants, VS resembles foot-and-mouth disease (FMD), 
a devastating animal disease absent in the United States, 
requiring rapid reporting and differential diagnostics of 
VS cases. Vesicular stomatitis has been primarily studied 
by epidemiologists with the assistance of veterinarians and 
local, state, and federal authorities. Control of VS outbreaks 
is primarily based on animal quarantines and strategies 
for managing exposure to insect vectors (primarily black 
flies and biting midges). Spatial patterns of disease have 
been related to one or a few biophysical and climatic fac-
tors (Rodríguez et al. 1996, McCluskey et al. 2003), but VS 
occurrence is expected to be strongly influenced by the 
biology and genetics of its vectors and hosts interacting with 
their environment (climate, soil, hydrology, vegetation). 
Understanding the VS system thus requires an approach 
integrating (a) transdisciplinary scientific expertise, (b) very 
large, heterogeneous databases over time across the western 
United States to account for insects biologies, viral phylo-
genetics, disease occurrence in livestock, environmental 
heterogeneity in time and space; and (c) technical expertise 
for data harmonization, integration, and analysis.

Guided by our research on data-model integration at 
the Jornada (figure 3), our multimodel, iterative analytical 
approaches (figure 4), and recent developments in machine 
learning (Peters et  al. 2014a), we developed a geospatial, 
iterative TDMI approach featuring human-guided machine 
learning to coherently integrate (a) fine-scale process-based 
data and understanding of vector and host responses to 
a pathogen and the local environment; (b) georeferenced 
disease incidence and virus phylogenetic data; and (c) 
fine-scale patterns of climate, hydrology, topography, soils, 
vegetation, and host density over a multidecadal time period 
across the continental extent of the disease (figure 5). This 
approach provides an objective method for evaluating the 
potential importance of individual and interacting environ-
mental variables within and across scales (local, landscape, 
region) when environmental data are available but little is 
known about the ecology of a complex system. Iterative 
human learning among team members occurs at steps 2–4, 
whereas human-guided machine learning occurs at step 5. 
Machine-learning methods are used to identify structure in 
complex, often nonlinear data in order to generate accurate 
predictive models (Olden et al. 2008). Although parts of the 
modeling process are automated through machine learning, 
our human-guided approach uses expert knowledge to spec-
ify how the data are represented and to identify the variables 
to be included in the model as the iterations proceed, in an 
extension of the process described in (Olden et al. 2006).

Step 1: Transdisciplinary team formation and synthesis of disease 
system understanding. Our transdisciplinary team consists 
of scientists with expertise in the phylogenetics of VS, the 
biology of the insect vectors, and equine (host) epidemiol-
ogy interacting with ecologists with expertise to account for 
interactions between the disease components and their envi-
ronment (an ecohydrologist, a range scientist, and a land-
scape ecologist). Ecoinformatics experts provide software 
and hardware expertise to standardize, harmonize, and ana-
lyze the diverse data sets. A systems ecologist integrates the 
scientific and technological components of the VS system.

Step 2: Synthesis of disease system understanding. Based on the 
team’s expertise, general relationships were formulated to 
explain spatial heterogeneity and temporal variability in 
VS across the spatiotemporal occurrences of the disease. A 
conceptual model of the disease system was developed to 
describe how the six processes related to VS transmission 
and dispersal are interrelated (figure 2). This diagram was 
instrumental in synthesizing the known information about 
VS and highlighting knowledge gaps. The development of 
this conceptual model and associated diagram were refined 
through time using human learning as the team worked 
through the problem.

Step 3: Hypothesis development and variable and data-set identifi-
cation. The conceptual model was used to develop specific 
hypotheses to explain the relationship between environmen-
tal drivers and biotic factors related to host density (number 
of animals, number of ranch or farm properties). Online, 
open-access databases were identified for each driver and 
mined to retrieve information at the temporal and spatial 
resolution, extent, and duration congruent with disease 
occurrence data and questions being addressed by the sci-
ence team. Weekly climatic data were selected as the finest 
temporal scale of resolution to account for uncertainty in the 
date of occurrence of infection compared with the reported 
date and a lack of detailed knowledge about certain aspects of 
insect biology. Temporal aggregations (e.g., seasonal averages 
of climatic variables) were conducted for the hypotheses to be 
tested. The spatial resolution (1 km × 1 km) was selected to 
capture uncertainty in the exact location where each animal 
became infected. The spatial extent was the 10-state region 
in the western United States for the entire duration where 
the disease occurred, including the prior year to account 
for time lags and legacy effects (2003 to 2016). We strategi-
cally selected variables for analysis by developing hypotheses 
that linked biological (e.g., biting-midge egg density) and 
environmental variables (e.g., soil water–holding capacity) 
needed to explain vector or host lifecycle stages under natural 
conditions (e.g., biting-midge eggs are found in small, shallow 
puddles of water) that were expected to contribute to disease 
spread (figure 5). These “pattern–process relationships” are 
similar to “pedotransfer functions” that predict difficult to 
measure soil properties from readily available soil profile data 
(e.g., Sequeira et  al. 2014). New hypotheses were specified 
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through model- building exercises based on expert knowl-
edge of existing data on vector and host responses to their 
environment combined with environmental data deemed 
parsimoniously relevant. For example, the STATSGO2 soils 
database contains more than 70 attribute tables with more 
than 850 variables. We selected two variables (available water 
holding capacity, AWC, and clay content) in the surface 
horizon because midge larvae development occurs in small 
puddles on the soil surface whose occurrence are related to 
these variables (Mullens 1989). This approach was repeated 
for each process with each driver and factor to determine the 
variables to be analyzed (figure 5, yellow and blue boxes). 
The processes vary in spatial scale from very fine (less than 
one millimeter; vector to vector transmission) to very broad 
(kilometers; dispersal by insects and transport by vehicles), 
and interactions with variables across scales can lead to 

complex, nonlinear dynamics (figure 5). This procedure was 
iterative with learning between the scientists and the software 
engineers as online data sources were examined for their res-
olution, and additional data sources were obtained as needed.

Step 4: Data harmonization and integration with a data science inte-
gration system. After identifying variables and their data sets, 
harmonization was needed to facilitate integration. First, 
the VS disease occurrence data were converted from a geo-
graphic coordinate system to an equal area projection system 
(e.g., Albers Equal Area Conic) to ensure cell size remained 
the same (1 km2) throughout the large spatial extent (approx-
imately 1.1 million km2) of the study area. All other vari-
ables underwent harmonization to match the projection, 
geographic origin, and cell size of this VS occurrence base 
map. For the raster data (e.g., gridded PPT at a 4 km × 4 km 

Figure 5. Systems diagram. A conceptual model of the disease system was developed to describe how the six processes related 
to disease transmission (yellow boxes) are related to each other. The different colored circles show either temporal (dark blue: 
overwintering) or spatial processes (light blue: local; red: spatial dispersal). The red arrows indicate change from healthy 
vector or host to infected vector or host. The green arrows indicate losses due to county-level quarantine and economic losses. 
For many diseases, including vesicular stomatitis (VS), experimental data of vector or host response to drivers are most 
often examined under controlled conditions in a laboratory (e.g., Walton et al. 1987, Kramer et al. 1990, Cupp et al. 1992). 
These data-rich studies provide potential responses to a climatic driver under laboratory conditions. Geographic patterns 
in the disease and its genetic lineage under natural environmental conditions (www.usda.aphis.gov) were used to develop 
relationships that resulted in the initial systems diagram that was refined through time with more data.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article-abstract/68/9/653/5090182 by Arizona State U

niversity W
est user on 04 Septem

ber 2018



Overview Article

662   BioScience • September 2018 / Vol. 68 No. 9 https://academic.oup.com/bioscience

resolution), harmonization consisted of resampling maps to 1 
km × 1 km. Vector data (e.g., points, lines, and curves) were 
converted to raster, harmonized to the base layer, and then 
translated into distance maps. Polygons were rasterized by 
calculating average properties, then harmonized to the base 
layer. All spatial data were manipulated with ArcGIS v.10.3 
that assisted in this harmonization procedure. Ultimately, 
the variable selection procedure resulted in 472 raster layers, 
which were collated into a harmonized data cube as a DSIS 
to enable calculations and predictions to be carried out in 
geographical space. For analyzing processes local to the VS 
occurrences, tabular, as opposed to geographic, databases 
within the DSIS were devised. Tabular data sets preserved 
fine-scale (weeks or months prior to a VS incident) temporal 
relationships between VS occurrence and environmental 
variables without masking by arbitrary classifications (e.g., 
month or season) at broad spatial scales. These tabular data 
were extracted from raster maps by calculating the mean 
of values extracted from a 100-point grid centered on a VS 
occurrence location that covered a cell size (4 km2) to char-
acterize the environment surrounding a VS occurrence. The 
harmonization of geographic and tabular data enabled analy-
ses to be carried out in a consistent manner across spatial and 
temporal scales. Harmonization required close collaboration 
among scientists and software engineers to ensure the most 
appropriate data sets and calculations were used for each 
variable. This was an iterative human-learning procedure 
where data sets or calculations were examined for accuracy, 
reliability, and comparability with other data sets.

Step 5: Analysis and interpretation of results. Data cube and occur-
rence data were used to construct a landscape- to regional-scale 
species distribution model by a machine-learning maximum 
entropy approach (Phillips et al. 2004). The model was evalu-
ated in tandem by exploratory data analysis with team expertise 
using the package MaxentVariableSelection in R (Jueterbock 
2015) to control model complexity, avoid collinearity among 
predictor variables, and optimize parameters. Although infor-
mation-theoretic approaches can guide this evaluation (Warren 
and Seifert 2011), the use of experts to identify biologically 
meaningful variables is paramount (Fourcade et al. 2017). The 
number of candidate variables in tabular data sets for multivari-
ate analysis was reduced to 20 for local-scale analysis using an 
iterative process to identify those with the strongest univariate 
relationship to VS occurrence and avoid collinearity among 
predictors more than 70%. Model performance was assessed 
using the corrected Akaike information criterion (AIC), which 
provides a relative measure of model quality considering fit and 
complexity (Peters et al. 2017).

Step 6: Test new hypotheses and feedback to conceptual model. Our 
TDMI approach was successful in identifying vectors of 
importance in different outbreak phases (e.g., black flies in 
the first years, then biting midges as the expansion spreads; 
Peters et al. 2017). The next step will be to conduct focused 
experiments to test these new hypotheses emerging from 

the TDMI approach, and to improve our understanding 
of the system by refining the vector–host–virus–environ-
ment interrelationships in the conceptual model (figure 2). 
Because our approach harmonizes and analyzes a large suite 
of diverse biotic and environmental data across multiple 
scales, we generated new insights into a complex system in 
which vector–host–environment relationships in the west-
ern United States were largely unknown. This new cross-
scale understanding in space and time was only possible 
through the transdisciplinary team of scientists and software 
engineers of working together.

Developing a knowledge landscape map integrated 
with a data science integrated system
Here, we extend the TDMI approach described above to see 
whether it can be used to integrate diverse, long-term envi-
ronmental data with detailed process-based data and knowl-
edge spanning multiple levels of organization obtained from 
disparate locations to create a fully integrated “knowledge 
landscape map.” This map would integrate multiple lines of 
evidence from specific study locations and time periods in a 
process-based approach by accounting for spatial heteroge-
neity in patterns and temporal nonlinearities in processes at 
multiple interacting scales.

We chose the Jornada to test this application of the 
TDMI approach for four reasons. First, because the Jornada 
has been a US Department of Agriculture research site 
since 1912 and a National Science Foundation Long Term 
Ecological Research Site since 1982, there are many long-
term data sets of the biota and environmental variables 
available (www.jornada.nmsu.edu/lter), and these are com-
plimented by data from diverse long-term experiments, 
simulation model outputs, imagery products, and onsite 
expertise for collaboration summarized in (Havstad et  al. 
2006, Peters et al. 2015). Second, developing general prin-
ciples from the Jornada will be applicable to a large portion 
of the Earth’s surface because this landscape is representa-
tive of drylands that cover 40% of the land surface of the 
Earth (Reynolds and Stafford-Smith 2002). Third, the 
Jornada landscape presents a significant challenge to the 
TDMI because it is spatially heterogeneous and temporally 
variable with thresholds, feedback mechanisms, lags, and 
legacies (Bestelmeyer et  al. 2011, Sala et  al. 2012, Monger 
et al. 2015). If the TDMI works here, it should also work for 
other complex terrestrial landscapes.

The fourth reason is that there is tremendous need for 
this type of landscape integration of data and knowledge 
at the Jornada. The primary questions addressed at the 
Jornada relate to the causes of variation in, and restoration 
options to mitigate, the long-term transformation from 
perennial grasslands to shrublands. Research approaches 
have involved “disentangling” the landscape into finer-
grained components based on landforms, soil properties, 
and soil–vegetation relationships, and developing state-
transition models and management strategies on the basis 
of these units (e.g., Monger and Bestelmeyer 2006). This 
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simplification has resulted in classifying the Jornada Basin 
according to soil-geomorphic units that exhibit variation in 
vegetation and soils across a hierarchy of scales that differ 
with respect to the two dominant physical transport vectors 
(wind, water) at broad scales (figure 6a, 6b; Monger 2006). 
A third vector, animals, interacts with wind and water to 
redistribute resources and create multiscale patterns (the red 
circle in figure 6b insert). The resulting five ecosystem types 
represent Chihuahuan Desert ecosystems, and are the basis 
for the stratified sampling used in many Jornada studies 
(e.g., Peters et  al. 2010, Rachal et  al. 2015). This disentan-
gling approach has facilitated a deep understanding of the 
processes and drivers governing patterns at fine to interme-
diate spatial and temporal scales (Havstad et al. 2006).

Although this approach has led to many insights into 
controls on function by ecosystem type, our ability to apply 
this knowledge to other locations or time periods is con-
strained on four fronts common to long-term research sites 
worldwide: (1) It ignores connectivity among geomorphic 
units that might drive change and lead to ecological surprises 
(Okin et  al. 2015). For example, geomorphic units can be 
connected by large-scale processes of wind or water that gen-
erate different dynamics in different locations (Stewart et al. 
2014). On the piedmont slope sand sheet, sand is deposited 
by large-scale wind processes from locations farther west 
resulting in long-term shrub coppice dune development 
whereas on the piedmont slope bajada, the Doña Ana moun-
tains block the wind such that water redistribution is the 
predominant driver of vegetation change leading to shrub 
dominance associated with sheet erosion and an absence 
of dunes (Gibbens et al. 2005, Monger 2006). (2) Inferences 
developed for specific ecosystems must be reliably extended 
to other locations, either at the Jornada or at other sites only 
cautiously. (3) Studies established to sample or monitor rep-
resentative areas of interest for particular reasons (individual 
or programmatic), do not represent the local, landscape or 
regional spatial heterogeneity, and sampling locations are 
not strategic or coordinated through time. Accordingly, 
more than 60% of studies at the Jornada have focused on the 
basin floor sand sheet (figure 6c). Long-term observations 
or monitoring of vegetation, soil, animals, and climate are 
distributed across a larger part of the Jornada than many of 
the experiments (figure 6d), often because observations were 
located programmatically to provide baseline data for all 
researchers. Large parts of the Jornada remain undersampled 
and undercharacterized relative to other intensively studied 
locations. This disparity is true for all research sites, but is 
magnified as site extent increases. (4) Studies are an eclectic 
collection of short- and long-term ad hoc investigations with 
inconsistent response and explanatory variables, methods 
(including sampling frequency or intensity), timings and 
durations. This limits their utility for comparison, synthesis, 
and integration among studies. Accordingly, the standardiza-
tion and harmonization processes in the TDMI approach will 
be more challenging than when using federated data from 
Internet sources (e.g., the VS example above).

Below, we describe an approach using well-defined data 
from multiple ecosystem types through time, and illustrate 
how general principles can be spatially distributed and 
applied to new locations. We then describe how a DSIS 
will be needed to support a landscape knowledge map for 
large, heterogeneous, long-term study sites such as the 
Jornada.

Estimating aboveground net primary production  
across the Jornada Basin using our integrated 
approach
In our final example, we sought to extend our previous 
result of perennial grass recovery on one location (the basin 
floor sand sheet) to the entire Jornada. We first translate 
our simple example (figure 3) into our transdisciplinary 
approach (figure 7) to address two goals: (1) improve 
our understanding of the processes controlling location-
specific patterns through time to predict future dynamics, 
and (2) extend these findings to other locations using a 
process-based understanding of intensively studied loca-
tions. For the latter, we used perennial grass ANPP data 
from  creosotebush and tarbush shrubland ecosystems on 
the piedmont slope bajada and transition zone geomor-
phic units, respectively (figure 7f). We then develop a 
grass recovery index based on the slope of the relationship 
between ANPP through the wet 2004–2008 period for each 
of the nine shrubland locations using a soil property (AWC) 
and initial perennial grass biomass in 2004 (figure 7g). This 
index was then used to estimate ANPP in each year of the 
wet period for the entire Jornada Basin (figure 7h) that 
can be compared with satellite products for the same time 
periods. This estimate of perennial grass recovery based on 
a mappable soil property and initial grass biomass is not 
specific to an ecosystem type.

This approach is not simple extrapolation because it 
accounts for thresholds in grass recovery through time that 
occurred between a drought (2000–2003) and the wet period 
(2004–2008). In addition, the traditional classification sys-
tem of ecosystem types had to be abandoned for an approach 
that allowed a continuous change in cover across the land-
scape. There could also be thresholds in space that are not 
associated with ecosystem types. These nonlinearities in 
time and space cannot be addressed in simple extrapolation 
methods.

This relatively simple example reveals how our TDMI 
approach can integrate multiple lines of evidence to  produce 
a landscape knowledge map for a spatially heterogeneous 
research site, accounting for thresholds, legacies, and lags 
(figure 7d, 7e, 7g). This example was possible because the 
response data (ANPP) and the explanatory data (PPT, 
AWC, and initial grass biomass) were readily standard-
ized and harmonized for these research locations. All of 
these data are core data sets that are georeferenced, col-
lected, and postprocessed by the Jornada LTER in the same 
way through time; thus, integration techniques focus on 
 harmonized data sets.
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Figure 6. Spatial heterogeneity in the Jornada landscape. (a) Four soil-geomorphic units exhibit variation in vegetation 
and soils across a hierarchy of scales: basin floor sand sheet, piedmont slope sand sheet, transition zone, and piedmont 
slope bajada. (b) Each unit differs with respect to the two dominant physical transport vectors (wind, yellow arrows; 
water, blue arrows) at broad scales. Insert: All three vectors (including animals; red circle) redistribute resources to 
result in multiscale patterns across the landscape. Feedback mechanisms between spatial variation in vegetation result 
in ecosystem types with different dominant vegetation and soil properties. Five ecosystem types occur that generally 
correspond to soil-geomorphic units (a): Upland grasslands dominated by black grama (Bouteloua eriopoda; green) and 
mesquite-dominated shrublands (Prosopis glandulosa; red) are found primarily on the basin floor and piedmont slope 
sand sheets; creosotebush-dominated shrublands (Larrea tridentata; yellow) occur on the piedmont slope bajada; tarbush-
dominated shrublands (Flourencia cernua; light green) occur in the transition zone; and playa grasslands dominated by 
tobosa grass (Pleuraphis mutica; blue) occur on low-lying areas throughout the landscape. (c) Long-term experiments 
and observational studies at the Jornada have been located based on study-specific objectives; most experiments occur 
on the sand sheet. (d) Observational and sensor networks at the Jornada are primarily programmatic and are spatially 
distributed to cover the heterogeneity of the research site.
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A general transdisciplinary data-model integration 
approach with multiple lines of evidence in a data 
science integrated system
More complex questions will require the integration of 
multiple lines of evidence that are first standardized and 
harmonized for the entire Jornada Basin. For example, 
observations in parts of the Jornada landscape suggest that 
wind and water interact within and across scales to influence 
ecosystem dynamics (Okin et  al. 2018). In other parts of 
the landscape, an integration of hydrological and ecological 
processes across scales is needed for reconstructing the cur-
rent mosaic of plant community patterns (Vivoni 2012). For 
instance, shrublands on piedmont slopes promote runoff 
into channels, which can lead to the transport of water to 
augment downslope precipitation, to influence vegetation 

state transitions and productivity in adjacent sites, and 
to confound local precipitation–production relationships 
(Schreiner-McGraw and Vivoni 2017). At a long-term 
research site such as the Jornada, these multiple lines of evi-
dence include data from long-term observations and experi-
mental manipulations, output from analytical and numerical 
models, and products from sensors and imagery products 
that form the basis of a DSIS. Based on our examples (figures 
2–7), an eight-step TDMI approach with human-guided 
machine learning and multiple lines of evidence is pro-
posed for addressing three common phenomena: alternative 
states, global change, and cross-scale interactions (figure 8). 
Theoretical frameworks can organize the knowledge base 
needed for understanding system behavior and pattern– 
process linkages within and across scales. The key to the 

Figure 7. Estimating aboveground net primary production (ANPP) across the Jornada Basin using our transdisciplinary 
data-model integration approach. We extended our previous result of perennial grass recovery on one location (figure 2) 
to the entire Jornada using our approach in order to (a) to predict future dynamics at this location, and (b) extend these 
findings to other locations across the landscape. In both cases, human and human-guided machine learning are used in 
the data acquisition and analysis phases and when developing the best ecotransfer functions for this system. To make 
predictions (a), we use our process-based understanding to develop relationships between precipitation and ANPP (in 
this example) during wet and dry periods that can be used under future climatic conditions. To extend our results to other 
locations (b), we used similar perennial grass ANPP data through time from two other ecosystem types (creosotebush 
shrublands and tarbush shrublands) on other locations. We developed an index of grass recovery based on a soil property 
and initial grass biomass that is not specific to an ecosystem type on the Jornada and can be tested at other dryland 
locations. See the text for details.
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TDMI approach is (a) site-based knowledge, (b) expertise 
in multiple disciplines, and (c) a systems perspective that 
enables an understanding and quantification of cross-scale 
interactions through the development of pattern–process 
relationships (i.e., ecotransfer functions) at multiple, inter-
acting scales and levels of biological organization.

Retooling the information management system into 
a data science and integration system
We envision a DSIS that broadens traditional information 
management systems that store and make accessible data 
and metadata in a standard format to include suites of har-
monized explanatory and response variables for each study 
location. Studies typically include response and explanatory 
variables defined by investigator- rather than site-specific 
objectives, thus limiting their broader utility. A standard 
set of response or explanatory variables will be needed for 
landscape integration based on knowledge of the system 

that goes beyond the environmental drivers. For example, 
depth to a restrictive layer is a better explanatory variable 
for perennial grass resilience during drought than surface 
soil texture (Herbel et al. 1972, Browning et al. 2012). Thus, 
depth to calcium carbonate should be measured or esti-
mated at all research locations in drylands and made acces-
sible as part of the DSIS. In addition, derived data products 
and pattern–process relationships developed during each 
TDMI procedure should be maintained as part of the DSIS. 
Maintaining a developmental history of the integrated land-
scape data sets, similar to that of the knowledge learning 
analysis system (Peters et al. 2014a), will allow users to build 
on previous users’ experiences and extend location-based 
understanding to other areas or to future points in time.

Conclusions
New technologies are increasing awareness that the Earth is 
a complex, interconnected system at many interacting spatial 

Figure 8. General transdisciplinary data-model integration approach for transdisciplinary research. Our approach 
based on spatiotemporal modeling of cross-scale interactions coupled with human and human-guided machine learning 
integrates (a) biological processes, (b) spatial heterogeneity in the land surface template, and (c) environmental drivers 
using data and knowledge drawn from multiple lines of evidence (i.e., short- and long-term observations, experimental 
manipulations, analytical and numerical models, products from imagery, conceptual model reasoning, and theory) in a 
data science integrated system. The eight steps that follow from a pattern that needs to be explained are similar regardless 
of the complexity of the problem.
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and temporal scales, and that understanding, predicting, and 
managing the dynamics of complex systems requires a trans-
disciplinary, data-intensive approach. Our premise was that 
technological advances in analytical, numerical, and behav-
ioral approaches combined with extensive sources of readily 
available federated and locally available data make a trans-
disciplinary approach increasingly feasible and tractable for 
application to multiscale, complex ecological problems. The 
TDMI approach proposed here exploits a wide array of exist-
ing data and expert knowledge to solve specific ecological 
problems, and directs new research efforts in productive and 
strategic directions. We successfully applied this approach to 
a suite of examples to demonstrate how point- or plot-based 
understanding can be more reliably extended to landscape 
scales and therefore can better inform decisions relevant to 
land management. We also developed a general landscape 
knowledge map with a corresponding data science integra-
tion system that can be used for a more diverse collection 
of questions. Future developments will focus on making 
predictions with greater certainty, advancing toward the goal 
of minimizing ecological surprises and averting unintended 
consequences. The steps we proposed could be refined and 
used for a wide range of large-scale ecological, social, and 
Earth-system problems at other terrestrial research sites.

Acknowledgments
This work was supported by the US Department of 
Agriculture–Agricultural Research Service Current Research 
Information System Projects at the Jornada Experimental 
Range (no. 6235-11210-007), the Plum Island Animal 
Disease Center (no. 8064-32000-058-00D), the Center for 
Grain and Animal Health Research (no. 8064-32000-058-
00D, #3020-32000-008-00D), the Rangeland Resources and 
Systems Research Unit (no. 3012-21610-001-00D), and the 
National Laboratory for Agriculture and the Environment 
(no. 5030-11610-003-00D). Funding was provided by 
the National Science Foundation to New Mexico State 
University for the Jornada Basin Long Term Ecological 
Research Program (nos. DEB 12-35828 and DEB 14-40166). 
We thank Mr. Darren James and Dr. Geovany Ramirez of 
NMSU for additional analyses in support of this study. We 
thank Dr. Matthew Pinch and Elizabeth Vera for manu-
script production support. We thank the US Department 
of Agriculture Office of the Chief Scientist for support of 
DPCP. The VSV Project is a USDA ARS Grand Challenge 
Project.

References cited
Allen TBH, Starr TB. 1985. Hierarchy: Perspectives for Ecological 

Complexity. University of Chicago Press.
Bestelmeyer BT, Brown J, Havstad K, Fredrickson EL. 2006. A holistic view 

of an arid ecosystem: A synthesis of research and its applications. Pages 
354–368 in Havstad KM, Huenneke LF, Schlesinger WH, eds. Structure 
and Function of a Chihuahuan Desert Ecosystem: The Jornada Basin 
Long-Term Ecological Research Site. Oxford University Press.

Bestelmeyer BT, et  al. 2011. Analysis of abrupt transitions in ecological 
systems. Ecosphere 2: 1–26.

Brokaw N, Crowl T, Lugo A, McDowell W, Scatena F, Waide R, Willig MR. 
2012. A Caribbean Forest Tapestry: The Multidimensional Nature of 
Disturbance and Response. Oxford University Press.

Brown JL. 2014. SDMtoolbox: A Python-based GIS toolkit for land-
scape genetic, biogeographic and species distribution model analyses. 
Methods in Ecology and Evolution 5: 694–700.

Browning DM, Duniway MC, Laliberte AS, Rango A. 2012. Hierarchical 
analysis of vegetation dynamics over 71 years: Soil–rainfall interac-
tions in a Chihuahuan Desert ecosystem. Ecological Applications 22: 
909–926.

Buffington LC, Herbel CH. 1965. Vegetational changes on a semides-
ert grassland range from 1858 to 1963. Ecological Monographs 35: 
139–164.

Burruss ND, Peters DPC, Yao J. 2017. Integrating historic datasets to inform 
ecotonal boundaries between great plains grasslands. Paper presented at 
the 102nd Annual Meeting of the Ecological Society of America; 6–11 
August 2017, Portland, Oregon.

Cadenasso ML, Pickett STA, Schwarz K. 2007. Spatial heterogeneity in 
urban ecosystems: Reconceptualizing land cover and a framework for 
classification. Frontiers in Ecology and the Environment 5: 80–88.

Carpenter SR, et al. 2009. Science for managing ecosystem services: Beyond 
the Millennium Ecosystem Assessment. Proceedings of the National 
Academy of Sciences 106: 1305–1312.

Collins SL, et al. 2014. A multiscale, hierarchical model of pulse dynamics 
in arid-land ecosystems. Annual Review of Ecology, Evolution, and 
Systematics 45: 397–419.

Cupp EW, Maré CJ, Cupp MS, Ramberg FB. 1992. Biological transmis-
sion of vesicular stomatitis virus (New Jersey) by Simulium vittatum 
(Diptera: Simuliidae). Journal of Medical Entomology 29: 137–140.

Dixon Hamil K-A, Iannone BV III, Huang WK, Fei S, Zhang H. 2016. 
Cross-scale contradictions in ecological relationships. Landscape 
Ecology 31: 7–18.

Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford 
WG. 2011. Impacts of shrub encroachment on ecosystem structure 
and functioning: Towards a global synthesis. Ecology Letters 14:  
709–722.

Fagre DB, et  al. 2009. Climate Change Science Program: Thresholds of 
Change in Ecosystems. US Geological Survey. Synthesis and Assessment 
Product no. 4.2.

Fieberg J, Johnson DH. 2015. MMI: Multimodel inference for models 
with management implications? Journal of Wildlife Management 79: 
708–718.

Fourcade Y, Besnard AG, Secondi J. 2017. Paintings predict the distribution 
of species, or the challenge of selecting environmental predictors and 
evaluation statistics. Global Ecology and Biogeography 27: 245–256.

Gibbens RP, McNeely RP, Havstad KM, Beck RF, Nolen B. 2005. Vegetation 
changes in the Jornada Basin from 1858 to 1998. Journal of Arid 
Environments 61: 651–668.

Gurevitch J, Fox GA, Fowler NL, Graham CH. 2016. Landscape demogra-
phy: Population change and its drivers across spatial scales. Quarterly 
Review of Biology 91: 459–485.

Hampton SE, Strasser CA, Tewksbury JJ, Gram WK, Budden AE, Batcheller 
AL, Duke CS, Porter JH. 2013. Big data and the future of ecology. 
Frontiers in Ecology and the Environment 11: 156–162.

Hampton SE, et al. 2015. The Tao of open science for ecology. Ecosphere 
6: 1–13.

Hatfield JL, Walthall CL. 2015. Meeting global food needs: Realizing the 
potential via Genetics × Environment × Management Interactions. 
Agronomy Journal 107: 1215–1226.

Havstad KM, Huenneke LF, Schlesinger WH, eds. 2006. Structure and 
Function of a Chihuahuan Desert Ecosystem: The Jornada Basin Long-
Term Ecological Research Site. Oxford University Press.

Heffernan JB, et al. 2014. Macrosystems ecology: Understanding ecological 
patterns and processes at continental scales. Frontiers in Ecology and 
the Environment 12: 5–14.

Herbel CH, Ares FN, Wright RA. 1972. Drought effects on a semidesert 
grassland range. Ecology 53: 1084–1093.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article-abstract/68/9/653/5090182 by Arizona State U

niversity W
est user on 04 Septem

ber 2018



Overview Article

668   BioScience • September 2018 / Vol. 68 No. 9 https://academic.oup.com/bioscience

Johnson PTJ, Ostfeld RS, Keesing F. 2015. Frontiers in research on biodiver-
sity and disease. Ecology Letters 18: 1119–1133.

Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak 
P. 2008. Global trends in emerging infectious diseases. Nature 451: 
990–993.

Jueterbock A. 2015. R package MaxentVariableSelection: Selecting the 
Best Set of Relevant Environmental Variables along with the Optimal 
Regularization Multiplier for Maxent Niche Modeling. R Foundation 
for Statistical Computing. (4 June 2018; https://cran.rproject.org/web/
packages/MaxentVariableSelection/index.html)

Kramer WL, Jones RH, Holbrook FR, Walton TE, Calisher CH. 1990. Isolation 
of arboviruses from Culicoides midges (Diptera: Ceratopogonidae) 
in Colorado during an epizootic of Vesicular Stomatitis New Jersey. 
Journal of Medical Entomology 27: 487–493.

Küchler AW. 1964. Manual to Accompany the Map: Potential Natural 
Vegetation of the Conterminous United States. American Geographical 
Society.

Levin SA. 1992. The problem of pattern and scale in ecology: The Robert H. 
MacArthur Award Lecture. Ecology 73: 1943–1967.

Liu J, et al. 2015. Systems integration for global sustainability. Science 347 
(art. 1258832).

McCluskey BJ, Beaty BJ, Salman MD. 2003. Climatic factors and the occur-
rence of Vesicular Stomatitis in New Mexico, United States of America. 
Reviews in Science and Technology 22: 849–856.

[MEA] Millennium Ecosystem Assessment. 2005. Ecosystems and Human 
Well-Being: Synthesis Report. Island Press.

Michener WK. 2015. Ecological data sharing. Ecological Informatics 29: 
33–44.

Miller JR, Turner MG, Smithwick EAH, Dent CL, Stanley EH. 2004. Spatial 
extrapolation: The science of predicting ecological patterns and pro-
cesses. BioScience 54: 310–320.

Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, 
Lettenmaier DP, Stouffer RJ. 2008. Stationarity is dead: Whither water 
management? Science 319: 573–574.

Monger HC. 2006. Soil development in the Jornada Basin: Structure and 
function of a Chihuahuan Desert ecosystem. Pages 81–106 In Havstad 
KM, Huenneke LF, Schlesinger WH, eds. Structure and Function 
of a Chihuahuan Desert Ecosystem: The Jornada Basin Long-Term 
Ecological Research Site. Oxford University Press.

Monger HC, Bestelmeyer BT. 2006. The soil-geomorphic template and 
biotic change in arid and semi-arid ecosystems. Journal of Arid 
Environments 65: 207–218.

Monger HC, Sala OE, Duniway MC, Goldfus H, Meir IA, Poch RM, Throop 
HL, Vivoni ER. 2015. Legacy effects in linked ecological–soil–geomor-
phic systems of drylands. Frontiers in Ecology and the Environment 
13: 13–19.

Mullens BA. 1989. A quantitative survey of Culicoides variipennis (Diptera: 
Ceratopogonidae) in dairy wastewater ponds in southern California. 
Journal Medical Entomology 26: 559–565.

Nadeau CP, Urban MC, Bridle JR. 2017. Climates past, present, and yet-
to-come shape climate change vulnerabilities. Trends in Ecology and 
Evolution 32: 786–800.

[NASEM] National Academies of Sciences Engineering and Medicine. 2016. 
Big Data and Analytics for Infectious Disease Research, Operations, and 
Policy: Proceedings of a Workshop. National Academies Press.

Noy-Meir IC. 1973. Desert ecosystems: Environment and producers. 
Annual Review of Ecology and Systematics 4: 25–51.

Okin GS, Heras MM, Saco PM, Throop HL, Vivoni ER, Parsons AJ, 
Wainwright J, Peters DPC. 2015. Connectivity in dryland landscapes: 
Shifting concepts of spatial interactions. Frontiers in Ecology and the 
Environment 13: 20–27.

Okin GS, Sala OE, Vivoni ER, Zhang J, Bhattachan A. 2018. The interactive 
role of wind and water in functioning of drylands: What does the future 
hold? BioScience. doi:10.1093/biosci/biy067

Olden JD, Poff NL, Bledsoe BP. 2006. Incorporating ecological knowledge into 
ecoinformatics: An example of modeling hierarchically structured aquatic 
communities with neural networks. Ecological Informatics 1: 33–42.

Olden JD, Lawler JJ, Poff NL. 2008. Machine learning methods without 
tears: A primer for ecologists. Quarterly Review of Biology 83: 171–193.

Peters DPC, Pielke RA, Bestelmeyer BT, Allen CD, Munson-McGee S, 
Havstad KM. 2004a. Cross-scale interactions, nonlinearities, and fore-
casting catastrophic events. Proceedings of the National Academy of 
Sciences 101: 15130–15135.

Peters DPC, Herrick JE, Urban D, Gardner R, Breshears D. 2004b. Strategies 
for ecological extrapolation. Oikos 106: 627–636.

Peters DPC, Bestelmeyer BT, Herrick JE, Fredrickson EL, Monger HC, 
Havstad KM. 2006. Disentangling complex landscapes: New insights 
into arid and semiarid system dynamics. BioScience 56: 491–501.

Peters DPC, Bestelmeyer BT, Turner MG. 2007. Cross-scale interactions 
and changing pattern–process relationships: Consequences for system 
dynamics. Ecosystems 10: 790–796.

Peters DPC, Groffman PM, Nadelhoffer KJ, Grimm NB, Collins SL, 
Michener WK, Huston MA. 2008. Living in an increasingly connected 
world: A framework for continental-scale environmental science. 
Frontiers in Ecology and the Environment 6: 229–237.

Peters DPC, Herrick JE, Monger HC, Huang H. 2010. Soil–vegetation–cli-
mate interactions in arid landscapes: Effects of the North American 
monsoon on grass recruitment. Journal of Arid Environments 74: 
618–623.

Peters DPC, Yao J, Sala OE, Anderson J. 2012. Directional climate change 
and potential reversal of desertification in arid and semiarid ecosys-
tems. Global Change Biology 18: 151–163.

Peters DPC, Havstad KM, Cushing J, Tweedie C, Fuentes O, Villanueva-Rosales 
NC. 2014a. Harnessing the power of big data: Infusing the scientific method 
with machine learning to transform ecology. Ecosphere 5: 1–15.

Peters DPC, Yao J, Browning DB, Rango A. 2014b. Mechanisms of grass 
response in grasslands and shrublands during dry or wet periods. 
Oecologia 174: 1323–1334.

Peters DPC, Havstad KM, Archer SR, Sala OE. 2015. Beyond desertifica-
tion: New paradigms for dryland landscapes. Frontiers in Ecology and 
the Environment 13: 4–12.

Peters DPC, Rodriguez L, McVey DS, Elias EH, Pelzel-McCluskey A, 
Derner JD, Yao J, Pauszek SJ, Schrader TS, Burruss N. 2017. OOS 
7-10—Towards a theory of ecological catastrophes based on cross-scale 
interactions: Insights from long-term data. Paper presented at the 102nd 
Annual Meeting of the Ecological Society of America; 6–11 August 
2017, Portland, Oregon.

Phillips SJ, Dudík M, Schapire RE. 2004. A maximum entropy approach 
to species distribution modeling. Paper presented at Twenty-First 
International Conference on Machine Learning; 4–8 July 2004, Banff, 
Alberta, Canada.

Plowright RK, Sokolow SH, Gorman ME, Daszak P, Foley JE. 2008. Causal 
inference in disease ecology: Investigating ecological drivers of disease 
emergence. Frontiers in Ecology and the Environment 6: 420–429.

R Development Core Team. 2017. R: A Language and Environment for 
Statistical Computing. R Foundation for Statistical Computing. (4 June 
2018; www.R-project.org)

Rachal DM, Okin GS, Alexander C, Herrick JE, Peters DPC. 2015. 
Modifying landscape connectivity by reducing wind driven sediment 
redistribution, Northern Chihuahuan Desert, USA. Aeolian Research 
17: 129–137.

Reid WV, et al. 2010. Earth system science for global sustainability: Grand 
challenges. Science 330: 916–917.

Reynolds JF, Stafford-Smith M. 2002. Global desertification: Do humans 
create deserts? Pages 1–22 in Stafford-Smith M, Reynolds JF, eds. Do 
Humans Create Deserts? Dahlem University Press.

Rodrıguez LL. 2002. Emergence and re-emergence of vesicular stomatitis in 
the United States. Virus Research 85: 211–219.

Rodríguez LL, Fitch WM, Nichol ST. 1996. Ecological factors rather than 
temporal factors dominate the evolution of vesicular stomatitis virus. 
Proceedings of the National Academy of Sciences 93: 13030–13035.

Romme WH, Whitby TG, Tinker DB, Turner MG. 2016. Deterministic and 
stochastic processes lead to divergence in plant communities 25 years 
after the 1988 Yellowstone fires. Ecological Monographs 86: 327–351.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article-abstract/68/9/653/5090182 by Arizona State U

niversity W
est user on 04 Septem

ber 2018



Overview Article

https://academic.oup.com/bioscience  September 2018 / Vol. 68 No. 9 • BioScience   669   

Sala OE, Parton WJ, Joyce LA, Lauenroth WK. 1988. Primary production 
of the Central Grassland region of the United States. Ecology 69: 40–45.

Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters DPC. 2012. Legacies 
of precipitation fluctuations on primary production: Theory and data 
synthesis. Philosophical Transactions of the Royal Society B 367: 
3135–3144.

Schreiner-McGraw AP, Vivoni, ER. 2017. Deep observations in arid 
piedmont watersheds and linkages to historical conditions in the 
Chihuahuan Desert. Ecosphere 8 (art. e02000).

Seidl R, Donato DC, Raffa KF, Turner MG. 2016. Spatial variability in 
tree regeneration after wildfire delays and dampens future bark beetle 
outbreaks. Proceedings of the National Academy of Sciences 113: 
13075–13080.

Sequeira CH, Wills SA, Seybold CA, West LT. 2014. Predicting soil bulk 
density for incomplete databases. Geoderma 213: 64–73.

Soranno PA, et al. 2014. Cross-scale interactions: Quantifying multi-scaled 
cause–effect relationships in macrosystems. Frontiers in Ecology and 
the Environment 12: 65–73.

Stegen JC. 2018. At the nexus of history, ecology, and hydrobiogeochemistry: 
Improved predictions across scales through integration. mSystems 3: 1–8.

Stewart J, Parsons AJ, Wainwright J, Okin GS, Bestelmeyer BT, Fredrickson 
EL, Schlesinger WH. 2014. Modeling emergent patterns of dynamic 
desert ecosystems. Ecological Monographs 84: 373–410.

Turner MG, Dale VH, Gardner RH. 1989. Predicting across scales: Theory 
development and testing. Landscape Ecology 3: 245–252.

Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC. 2011. Fever 
from the forest: Prospects for the continued emergence of sylvatic den-
gue virus and its impact on public health. Nature Reviews Microbiology 
9: 532–541.

Vivoni ER. 2012. Spatial patterns, processes and predictions in ecohydrology: 
Integrating technologies to meet the challenge. Ecohydrology 5: 235–241.

Warren DL, Seifert SN. 2011. Ecological niche modeling in Maxent: The 
importance of model complexity and the performance of model selec-
tion criteria. Ecological Applications 21: 335–342.

Walton TE, et  al. 1987. Epizootic vesicular stomatitis in Colorado, 1982: 
Epidemiologic and entomologic Studies. American Journal of Tropical 
Medicine and Hygiene 36: 166–176.

Wullschleger SD, Breen AL, Iversen CM, Olson MS, Näsholm T, Ganeteg 
U, Wallenstein MD, Weston DJ. 2015. Genomics in a changing arctic: 
Critical questions await the molecular ecologist. Molecular Ecology 24: 
2301–2309.

Young HS, Parker IM, Gilbert GS, Sofia Guerra A, Nunn CL. 2017. 
Introduced species, disease ecology, and biodiversity–disease relation-
ships. Trends in Ecology and Evolution 32: 41–54.

Debra P. C. Peters (deb.peters@ars.usda.gov), Emile H. Elias, Scott Schrader, Jin 
Yao, Brandon T. Bestelmeyer, Dawn M. Browning, and Jeffrey E. Herrick are 
affiliated with the US Department of Agriculture, Agricultural Research Service, 
Jornada Experimental Range Unit and the Jornada Basin Long Term Ecological 
Research Program, in Las Cruces, New Mexico. N. Dylan Burruss and Heather 
Savoy are affiliated with New Mexico State University, Jornada Experimental 
Range Unit, and Jornada Basin Long Term Ecological Research Program, in Las 
Cruces, New Mexico. Luis L. Rodriguez and Steven J. Pauszek are with the US 
Department of Agriculture, Agricultural Research Service, Plum Island Animal 
Disease Center, in Orient Point, New York. D. Scott McVey is affiliated with the 
US Department of Agriculture, Agricultural Research Service, Center for Grain 
and Animal Health Research, Arthropod-Borne Animal Diseases Research Unit, 
in Manhattan, Kansas. Angela M. Pelzel-McCluskey and T. Jason Lombard are 
with the US Department of Agriculture, Animal and Plant Health Inspection 
Service, Veterinary Services, in Fort Collins, Colorado. Justin D. Derner is with 
the US Department of Agriculture, Agricultural Research Service, Rangeland 
Resources and Systems Research Unit, in Cheyenne, Wyoming. Steven R. Archer 
is affiliated with the School of Natural Resources and the Environment at the 
University of Arizona, in Tucson. Colby W. Brungard and Niall P. Hanan 
are affiliated with the Department of Plant and Environmental Sciences, 
Jornada Basin Long Term Ecological Research Program, New Mexico State 
University, in Las Cruces. Jerry L. Hatfield is with the US Department of 
Agriculture, Agricultural Research Service, National Laboratory for Agriculture 
and the Environment, in Ames, Iowa. Gregory S. Okin is with the Department 
of Geography at the University of California, Los Angeles. Osvaldo E. Sala is 
affiliated with the School of Life Sciences at Arizona State University, in Tempe. 
Enrique R. Vivoni is affiliated with the School of Earth and Space Exploration 
and the School of Sustainable Engineering and the Built Environment at 
Arizona State University, in Tempe.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article-abstract/68/9/653/5090182 by Arizona State U

niversity W
est user on 04 Septem

ber 2018


