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Abstract

Climate‐change assessments project increasing precipitation variability through

increased frequency of extreme events. However, the effects of interannual precipi-

tation variance per se on ecosystem functioning have been largely understudied.

Here, we report on the effects of interannual precipitation variability on the primary

production of global drylands, which include deserts, steppes, shrublands, grasslands,

and prairies and cover about 40% of the terrestrial earth surface. We used a global

database that has 43 datasets, which are uniformly distributed in parameter space

and each has at least 10 years of data. We found (a) that at the global scale, precipi-

tation variability has a negative effect on aboveground net primary production. (b)

Expected increases in interannual precipitation variability for the year 2,100 may

result in a decrease of up to 12% of the global terrestrial carbon sink. (c) The effect

of precipitation interannual variability on dryland productivity changes from positive

to negative along a precipitation gradient. Arid sites with mean precipitation under

300 mm/year responded positively to increases in precipitation variability, whereas

sites with mean precipitation over 300 mm/year responded negatively. We propose

three complementary mechanisms to explain this result: (a) concave‐up and con-

cave‐down precipitation–production relationships in arid vs. humid systems, (b) shift

in the distribution of water in the soil profile, and (c) altered frequency of positive

and negative legacies. Our results demonstrated that enhanced precipitation vari-

ability will have direct impacts on global drylands that can potentially affect the

future terrestrial carbon sink.
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1 | INTRODUCTION

In addition to changes in precipitation amount, the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change (IPCC,

2013) projects increasing precipitation variability through high fre-

quency of extreme events at various temporal scales. However, the

effects of interannual precipitation variance per se on ecosystem

functioning have been largely understudied. Here, we report on the

effects of interannual precipitation variability on the primary produc-

tion of global drylands, which include deserts, steppes, shrublands,

grasslands, and prairies and cover about 45% of the terrestrial earth

surface (Prăvălie, 2016).

Mechanisms explaining changes in precipitation variability vary

among temporal scales. At short scales, increasing precipitation varia-

tion is related to enhanced water‐holding capacity of a warmer

atmosphere at 7% per degree Kelvin of warming as predicted by

Clausius–Clapeyron relationship (Kharin, Zwiers, Zhang, & Hegerl,

2007; Trenberth, Dai, Rasmussen, & Parsons, 2003). Such estimation

could be constrained to 2.5% per degree of warming by available
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energy in the troposphere (Liu, Wang, Cane, Yim, & Lee, 2013).

Recent studies have shown that extreme rainfall can be enhanced

up to 15% per degree K but only for large precipitation events (Pen-

dergrass, 2018). At interannual to multiyear scales, changes in pre-

cipitation patterns are related to intensification of atmospheric

circulations such as El Niño Southern Oscillation (Easterling et al.,

2000; Lewis, Brando, Phillips, Heijden, & Nepstad, 2011) and large‐
scale rearrangements of atmospheric modes (Seneviratne, Luthi,

Litschi, & Schar, 2006).

The effects of precipitation variance on ecosystem functioning

have been especially understudied at interannual and global scales

due to usual short‐term and local funding limitations. Empirical stud-

ies exploring within year (intraannual) precipitation variability effects

on aboveground net primary production (ANPP) are very insightful

but also scarce and inconclusive. Previous works have reported neg-

ative responses due to leaf‐level water stress of the dominant spe-

cies (Knapp et al., 2002), null ANPP responses with positive trends

supported by changes in soil‐water regimes (Thomey et al., 2011)

and mixed responses across sites due to differential sensitivity to

precipitation (Heisler‐White, Blair, Kelly, Harmoney, & Knapp, 2009).

At the interannual scale, a long‐term manipulative experiment

located in an arid grassland in New Mexico, USA, showed that pre-

cipitation variability had a negative effect on ecosystem productivity

(Gherardi & Sala, 2015a, 2015b ). Here, we aimed at exploring the

effects of interannual precipitation variability on ANPP across dry-

land ecosystems globally.

The relationship between primary productivity and precipitation

has been a long‐standing topic in ecology (Bai et al., 2008; Sala,

Gherardi, Reichmann, Jobbagy, & Peters, 2012; Sala, Parton, Joyce,

& Lauenroth, 1988) because ANPP is an indicator of ecosystem

functioning closely related to energy flux and carbon cycling. Most

studies looking at “precipitation variability” effects on aboveground

net primary production (ANPP) have looked at time series of precipi-

tation and ANPP (Smoliak, 1986) assessing the effect of amount of

precipitation over time, not that of variability per se, on ANPP.

Other studies evaluated the relationship between production to rain-

fall variability ratios (Lauenroth & Sala, 1992; Wiegand, Snyman,

Kellner, & Paruelo, 2004; Yang, Fang, Ma, & Wang, 2008). Although

important contributions, these studies did not test for the effects of

precipitation variation per se as a determinant of productivity and

independent of the effects of precipitation amount. Recent studies

have highlighted the importance of the effects of precipitation vari-

ability on ecosystem functioning and structure (Knapp et al., 2008;

Rudgers et al., 2018). Proposed mechanisms explaining the effects of

enhanced precipitation variability include nonlinear ANPP responses

to precipitation (Hsu, Powell, & Adler, 2012), increased physiological

stress on dominant species (Knapp et al., 2002), and shifts in the

depth of soil‐water distribution (Sala, Gherardi, & Peters, 2015).

Our work attempted to answer two questions. First question: Is

there an overall effect of interannual precipitation variability on dry-

land ANPP at a global scale? Enhanced interannual precipitation vari-

ability results from increased frequency of extreme events, both dry

and wet. Dry years have a negative effect on ANPP, while wet years

have a positive effect on ANPP (Jobbágy, Sala, & Paruelo, 2002;

Lauenroth & Sala, 1992; Sala et al., 1988). The overall effect of pre-

cipitation variability on ANPP will depend on the relative magnitude

of positive and negative ecosystem responses to precipitation. If

positive and negative ANPP deviations are of the same magnitude,

the effects of dry and wet years would be similar canceling each

other and resulting in null effect of precipitation variability. On the

contrary, if positive ANPP responses caused by wet years are larger

than negative deviations caused by dry years, the effect of enhanced

precipitation variability would be positive. Finally, if ANPP decreases

due to dry conditions are larger than the ANPP increase during wet

years, the effect of increased precipitation variability would be nega-

tive. These relative ANPP responses to wet and dry years may be

affected by the shape of the ANPP response to precipitation (Hsu

et al., 2012) or by legacy effects (Sala et al., 2015). The overall effect

of precipitation variability will hinge on linear to nonlinear ANPP

responses to precipitation or on the relative importance of negative

and positive legacy effects. Second question: Does the effect of pre-

cipitation variability change along a precipitation gradient from arid

to mesic ecosystems, from desert grasslands to prairies? There is evi-

dence showing that the slope of the ANPP–precipitation relationship

decreases along gradients of mean‐annual precipitation (Huxman

et al., 2004; Sala et al., 2012). Moreover, the mechanism behind this

general pattern is associated with the limited response of mesic

grasslands to extreme wet events resulting from colimitation of

water availability with other resources such as nitrogen (Yahdjian,

Gherardi, & Sala, 2011). On the contrary, water limitation in arid

ecosystems is relatively strong and colimitation by other resources is

less frequent.

In order to answer these questions, we present a global synthesis

of long‐term datasets that cover a wide range of geographical and

environmental spaces (Figure 1 and Supporting Information Fig-

ure S1) characteristic of drylands representing the functioning of

most treeless ecosystems (Knapp et al., 2015; Reynolds et al., 2007).

This collection of sites includes ecosystems dominated by grasses,

shrubs, and codominated by grasses and shrubs.

2 | MATERIALS AND METHODS

2.1 | Data collection

We collected 43 long‐term (≥10 years) datasets from locations

around the world where mean precipitation coefficient of variation

spanned from 8% to 38%, mean‐annual precipitation ranged from

165 to 901 mm, and mean‐annual temperature ranged from −1.9 to

19.6°C (Figure 1 and Supporting Information Table S1). We collected

data from three sources: (A) Existing databases from the Long Term

Ecological Research (LTER) network, available through the EcoTrends

project, the Oak Ridge National Laboratory (ORNL). (B) Data from

publications, which were extracted from tables or figures whenever

it was not available through a data repository, and (C) directly from

researchers. In order to have enough temporal representation of

each dataset in our analyses, we limited our searches to datasets
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that consisted, at least, of 10 consecutive years (Table S1). We also

excluded floodplain and playa sites (McKenna & Sala, 2018) where

water input through run‐on may overshadow precipitation input and

mask its effects.

2.2 | Data analysis

We aggregated our data in 5‐year moving windows and calculated

precipitation coefficient of variation (CV), mean precipitation, and

mean ANPP for each time window. This approach allowed us to test

directly the effect of precipitation variability as an explanatory vari-

able for each site. For the overall ANPP response to precipitation

CV, we fitted a mixed‐effect model where we tested for precipita-

tion CV fixed effect and for precipitation CV and site random effects

allowing for random intercepts and slopes for each site (Figure 2,

Supporting Information Data S1). We used overlapping window anal-

yses because nonoverlapping windows reduce significantly the sam-

ple size and are very inefficient (Harri & Brorsen, 2009). However, in

order to account for the overlapping nature of our data, we ran a

bootstrapped analysis that provides conservative estimates (Adams,

Gurevitch, & Rosenberg, 1997) for effect size and confidence inter-

vals. We ran ten thousand iterations of the same mixed‐model analy-

sis presented in Figure 2 but using a random subset of replicates

that may overlap or not. We obtained similar results than those

obtained using overlapping windows (Supporting Information Data

S1 and Figure S1). Therefore, we kept the overlapping window anal-

ysis because it increases the number of events included in within

site tests. Otherwise, a site with only 10 years of data would have

only two nonoverlapping events limiting the scope of within site

inference.

Next, we extracted precipitation coefficient of variation effect

size (fixed plus random effects) estimated from the output and fitted

a linear model with long‐term mean‐annual precipitation as explana-

tory variable (Figure 3).

In order to explore nonlinear responses, we fitted linear and

nonlinear models to subsets of ANPP–precipitation data for sites

with long‐term mean‐annual precipitation below 300 mm/year and

above 300 mm/year. Nonlinear models consisted of exponential and

logarithmic models covering both concave‐up and concave‐down

responses (Figure 4), while the linear model represented the null

F IGURE 1 Geographical and climatological distribution of sites from where long‐term aboveground net primary production data were
obtained for this study. (a) Geographical location of study sites and their correspondent ecosystem province (Bailey, 1989/1993). (b)
Climatological distribution of sites along temperature and precipitation gradients. Circle size indicates precipitation coefficient of variation for
5‐year periods

F IGURE 2 Overall negative effect of increasing interannual
precipitation variability on aboveground net primary production
(ANPP). Precipitation variability was depicted by the coefficient of
variation of annual precipitation (CV) assessed in 5‐year windows.
Thin lines are mixed‐effect model fits for each site. Thick line
indicates overall response across sites, and the shaded band
indicates 95% confidence interval (5‐year mean
ANPP = 229 − 0.6 × Precipitation CV). Each point corresponds to
a 5‐year moving window mean for ANPP and coefficient of
variation of precipitation (p = 0.02, fixed effect size = −0.6,
SE = 0.27)
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hypothesis. Then, we selected the best model using the AICc (Saka-

moto, Ishiguro, & Kitagawa, 1986) information criterion (Supporting

Information Data S1).

We performed all analyses and created all figures using R version

3.0.2 (R Core Team, 2016). Data were square‐root‐transformed to

meet model assumptions when necessary but presented in original

format for simplicity. The map presented on figure one was drawn

using packages: ade4 (Dray & Dufour, 2007), RSEIS (Lees, 2012), and

adehabitat (Calenge, 2006). Linear and nonlinear mixed‐effect models

were fitted using the nlme package (Pinheiro, Bates, DebRoy, & Sar-

kar, 2018), and data aggregation and calculations were done using

package reshape (Wickham, 2007).

2.3 | Legacy effect calculation

Legacies are the fraction of current ANPP accounted for ANPP or

precipitation conditions that occurred in the previous year (Sala

et al, 2012). Legacies are calculated as the difference between

observed and expected ANPP, which then was estimated using

annual precipitation for each year and in each site (Reichmann, Sala,

& Peters, 2013; Sala et al., 2012). We considered positive and nega-

tive legacies when their magnitude was larger than or smaller than

one‐half standard deviation from the mean legacy effect at each site.

In order to estimate legacy effects, the expected and observed

ANPP must be from independent sources otherwise the legacies are

incorporated in the ANPP‐PPT model and tend to zero. For example,

if we estimated expected ANPP from least squares models for each

site and then subtracted observed ANPP, the mean legacy effect will

always tend to zero because the legacy estimations would be repre-

sented by deviations of each observation to the fitted model that,

by definition, minimizes deviations. Here, we used observed ANPP

from our database and two independent estimates of expected

ANPP using previously published models (Sala et al., 1988, 2012 ).

The Sala et al. (1988) is a continental‐scale spatial model fitted for

the Great Plains of North America but almost identical models were

found in Africa (McNaughton, 1985) and Asia (Bai et al., 2008). The

advantage of using a spatial model is its generality. The problem is

that it has a common Y‐intercept and slope for all sites that in reality

are different from that of temporal models of specific sites. To over-

come this limitation, we used the slope of a generalized temporal

model (Sala et al., 2012) derived from temporal models fit to several

F IGURE 3 Ecosystem sensitivity to precipitation variability, which
is here defined as the change in 5‐year mean aboveground net
primary productivity per unit change in 5‐year precipitation
coefficient of variation, as a function of mean‐annual precipitation of
different dryland sites. Ecosystem sensitivity was positive in drylands
with <300 mm annual precipitation indicating that productivity
increased with precipitation variability. Ecosystem sensitivity to
precipitation variability was negative in sites with long‐term
precipitation above 300 mm. Ecosystem sensitivity corresponds to
estimates of mixed‐model effect size (fixed plus random effects) of
precipitation coefficient of variation on primary productivity for each
site as a function of long‐term mean‐annual precipitation. Line
indicates linear model fit (Ecosystem
sensitivity = 0.89 – 0.003 × Long‐term mean‐annual precipitation;
p < 0.001, R2 = 0.68), and the shaded band shows 95% confidence
interval

F IGURE 4 Nonlinear aboveground net primary productivity
(ANPP) response to annual precipitation amount for sites below and
above 300 mm of mean‐annual precipitation. Mean 5‐year
aboveground net primary production as a function of mean 5‐year
precipitation for sites where long‐term mean precipitation was below
300 mm/year (a, ANPP = 24.6 × exp[0.006 × Precipitation]) and for
sites above 300 mm/year of mean‐annual precipitation (b,
ANPP = −1872 + 343 × log[Precipitation]). Model fits show the best
model among linear and nonlinear models compared through AIC
(Supporting Information Data S1). Bands indicate 95% confidence
interval
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sites across drylands and specific Y‐intercepts for each site from our

database. This solution provides a generalized slope similar to that of

temporal models and realistic Y‐intercepts for each site. The answer

to our question of the magnitude of the legacy effect in sites with

less or more than 300 mm of annual precipitation was the same with

the two approaches. Similar answers obtained using different

approaches provide an indication of the robustness of the conclu-

sions (Table 1).

2.4 | Carbon fixation calculation

We used the response surface from the mixed‐model analysis to esti-

mate the dryland sensitivity to precipitation variability expressed as

the change in primary productivity per percent unit change in precipi-

tation coefficient of variation. We used predictions of the Clausius–
Clapeyron relationship (Trenberth et al., 2003) constrained to 2.5%

per degree by available energy in the troposphere (Liu et al., 2013)

and a projected temperature increase between 2 and 6°C to estimate

potential precipitation variability changes for the year 2,100. In order

to be conservative, we did not consider recent estimates of a 15%

precipitation variability increase per degree K (Pendergrass, 2018).

We estimated potential carbon sequestered on ANPP (C‐ANPP) as

one half of aboveground net primary production because plant tissue

usually contains about 50% carbon (Schlesinger & Bernhardt, 1997).

We calculated change in C‐ANPP as the product of ecosystem sensi-

tivity to precipitation variability times the expected precipitation vari-

ability change by total grassland area (Equation 1) of 52,500,000 km2

(World Resources Institute 2000, based on IGBP data).

C� ANPPchange ¼ EcosystemSensitivity�
PPTCV change �DrylandArea

(1)

This estimate provided context and highlighted the potential

impact of projected precipitation variability on the carbon cycle,

which indeed depends on the future of numerous climatic and land‐
use variables. We argue that this is a conservative estimate because

it only considers aboveground carbon overlooking all carbon fixed

belowground and because we did not take into account recent vari-

ability increase estimates of 15% per degree K. Including any of these

two considerations would double the estimates presented here.

3 | RESULTS AND DISCUSSION

Interannual precipitation variability had a negative overall effect on

ANPP at the global scale (Figure 2). Across drylands from arid

steppes to mesic prairies, primary productivity decreased by ~60 kg

km−2 year−1 per unit percent increase in precipitation coefficient of

variation. Our results are robust because they did not change when

we used different time windows (4, 5, or 6 years) and because they

were insensitive to using overlapping windows or randomly selected

5‐year intervals (Supporting Information Data S1 and Figure S1). The

“Coupled Model Intercomparison Project phase 5” projected,

depending on the emission path, increases in temperature for the

year 2,100 between 2 and 6°C (Wuebbles et al., 2014) that are

expected to increase precipitation variability between 5% and 17%

(Kharin et al., 2007; Trenberth et al., 2003). Our results indicated

that this increase in precipitation variability may result in an ANPP

decrease for global drylands ranging between 307 and 1,043 kg

km−2 year−1. Given the extension of ecosystems included in this

assessment, increased precipitation variability per se may result in a

decline in global C‐ANPP from about 0.1–0.3 Pg C year−1, where C‐
ANPP is the amount of carbon in aboveground net primary produc-

tion. This decline in C‐ANPP represents 4%–12% of the mean C sink

reported by the global carbon project for the last decade (Le Quéré

et al., 2017; Poulter et al., 2014).

Our analysis further showed that ANPP responses to precipita-

tion variability were modulated by long‐term precipitation resulting

in opposite responses along a mean‐annual precipitation gradient

from arid to mesic sites (Figure 3). Ecosystems with long‐term pre-

cipitation below 300 mm/year showed a positive ANPP response to

precipitation coefficient of variation, while sites above 300 mm/year

showed a negative response (Figure 3). We proposed three explana-

tions for the contrasting effect of precipitation variability on ANPP

from arid to mesic drylands. Such explanations are not exclusive and

may represent parts of the same phenomenon.

The first explanation is based on ANPP responses to precipita-

tion amount that determine the overall response to precipitation

variability over multiyear periods (Gherardi & Sala, 2015b; Rudgers

et al., 2018). In order to test this rationale, we fitted linear and

nonlinear mixed models for sites with long‐term precipitation below

and above 300 mm/year. In arid sites (<300 mm/year mean‐annual
precipitation), ANPP responded to increasing precipitation in a con-

cave‐up fashion. Sites with long‐term precipitation above 300 mm/

year showed a concave‐down response, all tested through Akaike’s

information criterion (AICc) (Figure 4a,b and Supporting Information

Data S1). The Jensen’s inequality indicates that the effect of precipi-

tation variability on ANPP depends on the curvature of the

TABLE 1 Number, relative size of positive and negative legacies
for sites below and above 300 mm/year of long‐term mean‐annual
precipitation. We calculated legacy effects as the difference
between independent estimates of expected and observed
aboveground net primary production (ANPP). We calculated relative
legacy size as the ratio between each year’s legacy and mean legacy.
We used yearly ANPP values in our dataset as observed ANPP and
estimated expected ANPP using two models of the ANPP–
precipitation relationship

Legacy effects

Positive Negative

Number Relative size Number Relative size

Sala et al (1988) Model

Below 300 mm 29 4.6 28 3.5

Above 300 mm 163 4.9 175 6.4

Unified temporal model

Below 300 mm 31 8.3 32 3.1

Above 300 mm 141 7.6 134 9.7
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relationship between precipitation amount and ANPP (Gherardi &

Sala, 2015b; Hsu et al., 2012). Increase precipitation variance results

in higher frequency of positive and negative precipitation extremes

or anomalies. In the case when the ANPP–precipitation relationship

is concave up, the absolute effect of enhanced frequency of extreme

positive precipitation is larger than the absolute effect of enhanced

negative anomalies. Therefore, positive ANPP responses resulting

from wet years overcompensate ANPP reductions caused by dry

years resulting in a positive mean ANPP response to increased pre-

cipitation variability (Figure 4a). Conversely, in the case of a con-

cave‐down or saturating ANPP–precipitation relationship, the effect

of negative anomalies or dry years is larger in absolute value than

the effect of extreme wet years (Figure 4b). Therefore, ANPP

responses to positive precipitation extremes do not compensate pro-

ductivity decrease caused by dry years resulting in a negative mean

ANPP response to precipitation variability of mesic sites. Pioneer

efforts did not find significant nonlinearities when analyzing within

site responses (Hsu et al., 2012) probably because of lack of statisti-

cal power. Our mixed‐model approach allowed us to find significant

relationships at regional to global scales.

The concave‐up, linear or concave‐down shape of the ANPP–pre-
cipitation relationship represents a continuum of responses

accounted for by the shifting frequency of multiple resource limita-

tion along gradients of long‐term mean‐annual precipitation (Huxman

et al., 2004; Yahdjian et al., 2011). In arid sites, ANPP is most fre-

quently limited by soil‐water availability with nutrient and light limi-

tation occurring only during or after rainy periods. On the contrary,

more mesic drylands are less frequently limited by soil‐water avail-

ability and more commonly limited by nutrient availability. Therefore,

an extremely wet year in humid locations has a smaller effect than

in arid ecosystems. A meta‐analysis of N fertilization studies showing

increases in the fertilization response ratio with mean‐annual precipi-
tation confirms the shifting frequency in resource limitation (Yahdjian

et al., 2011). Similarly, global analyses of the ANPP–annual precipita-
tion show a decline in the slope of the relationship between annual

ANPP and annual precipitation with mean‐annual precipitation rang-

ing from deserts to prairies (Huxman et al., 2004; Sala et al., 2012).

The second explanation for why mean‐annual precipitation mod-

ulated the effect of precipitation variance on ANPP is related to

legacy effects. Legacies are defined as the negative effect of a dry

year or positive effect of a wet year on ANPP after it has occurred

(Sala et al., 2012). For example, negative legacies caused by a dry

year affect plant‐community structure and reduce grass‐tiller density
that in a subsequent wet year constrains the ability of ecosystems

to exploit available resources (Reichmann & Sala, 2014). Positive and

negative legacies are proportional to the difference in precipitation

between current and previous year (Reichmann et al., 2013). There-

fore, increased interannual precipitation variability would increase

the magnitude of legacies by increasing the difference in precipita-

tion between current and previous years. If positive and negative

legacies were of the same magnitude, they would cancel each other;

and increased precipitation variance would have no effect on mean

multiyear ANPP. If negative legacies were larger than positive

legacies, increased interannual precipitation variability would have a

negative impact and if positive legacies were larger than negative

legacies, ANPP response to increased precipitation variation would

be positive. We estimated legacy magnitude as the difference

between observed ANPP and two independent estimations of

expected ANPP (Sala et al., 2012). We assessed the number and the

relative size of positive and negative legacies on annual productivity

for sites below 300 mm/year and above 300 mm/year of long‐term
precipitation (Table 1). The size of legacy effects relative to the

mean legacy effect was larger for positive than for negative legacies

at sites that received <300 mm/year. On the contrary, sites above

300 mm/year showed that the relative size of negative legacies was

larger than positive legacies (Table 1). Both estimations of legacies

showed qualitatively similar results providing support for our conclu-

sion.

The third explanation relates to changes in water distribution in

the soil profile that ultimately determines water availability for

plants. Increased precipitation variability deepens soil‐water distribu-

tion (Sala et al., 2015) because of the disproportionate effects of

wet and dry years on the depth of water penetration in the soil. Pre-

cipitation during dry years only fills the topsoil, while in wet years, it

reaches deep soil layers (Sala, Lauenroth, & Parton, 1992). Evapora-

tion losses occur only from the uppermost soil layer and represent a

larger fraction of the total water loss during a dry year than during a

wet year. For example, a modeling experiment indicated that for a

site with mean‐annual precipitation of 300 mm/year, soil evaporation

accounted for 50% of losses, while for a site with precipitation of

600 mm/year, evaporation explained only 20% of water losses (Sala

et al., 2015). The depth of penetration per unit of precipitation

increases with the amount of rainfall because water lost through

evaporation decreases in relative importance. Increased interannual

precipitation variability results from enhanced frequency of extre-

mely dry and wet years. Since the effect of extreme wet and dry

years on soil‐water depth is not symmetrical, increased precipitation

variability leads to a deeper soil moisture profile. In arid sites, deep

water infiltration reduces surface evaporation increasing plant‐avail-
able water and ANPP. In mesic sites, high precipitation variability

enhances deep‐percolation losses decreasing plant‐available water

and ANPP. This mechanism contributes to the explanation of the

contrasting responses of ecosystems to increased interannual precip-

itation variability along the long‐term precipitation gradient. We

found that precipitation coefficient of variation and mean at each

site for all 5‐year windows were not associated with each other

(Supporting Information Data S1). Therefore, high variability periods

were not wetter or drier than low variability periods, excluding this

as an explanation of the patterns reported here.

Addressing the effects of precipitation variability on ANPP across

space, under current, and future climate conditions requires a series

of complementary studies (Cottingham, Fey, Fritschie, & Trout‐
Haney, 2017; Munafò & Davey Smith, 2018). Data synthesis pro-

vides a long‐term perspective and broad breadth of the global distri-

bution of the precipitation response in geographical and parameter

space but the correlative nature of these studies limits elucidation of
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cause–effect relationships. Manipulative experiments, on the con-

trary, provide the cause–effect assessment but lack the long‐term
and spatially broad perspective. Finally, simulation models comple-

ment the previous two approaches by allowing the exploration of

situations that have not yet existed and mechanisms that are diffi-

cult to measure. Our synthesis of 43 datasets of ANPP from sites

around the world yielded a pattern of positive effects of enhanced

precipitation variability on ANPP for sites <300 mm/year of long‐
term precipitation and an opposite pattern for sites >300 mm/year.

These results agreed with continental modeling and previous data

synthesis efforts (Sala et al., 1988, 2015 ). The model assessed the

impacts of enhanced precipitation variability and suggested a similar

breaking point at around 380 mm/year of long‐term precipitation

below which enhanced precipitation variability increased plant‐avail-
able water, and above this point ecosystems showed the opposite

pattern (Sala et al., 2015). The data synthesis of ANPP from >900

sites in the US Great Plains, which were independent from those

used here, also showed a break point at approximately the same

long‐term mean‐annual precipitation (Sala et al., 1988). In drier sites,

coarse‐textured soils had higher production than fine‐textured soils;

and the opposite was true in more mesic environments. Finally,

manipulative experiments (Gherardi & Sala, 2015a, 2015b ) located

in a dry grassland in the southwestern United States showed posi-

tive effects of interannual precipitation variability for shrubs and

negative for grasses driven by changes in the soil‐water distribution

and species interactions. Further regional‐scale experimentation is

needed to explore causation and biotic mechanisms, which are

essential to make meaningful predictions of the future effects of cli-

mate change on drylands, which account for most of the interannual

variability of the terrestrial carbon sink (Poulter et al., 2014).
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