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Carbon allocated underground through belowground net primary
production represents the main input to soil organic carbon. This is
of significant importance, because soil organic carbon is the third-
largest carbon stock after oceanic and geological pools. However,
drivers and controls of belowground productivity and the fraction
of total carbon fixation allocated belowground remain uncertain.
Here we estimate global belowground net primary productivity as
the difference between satellite-based total net primary produc-
tivity and field observations of aboveground net primary produc-
tion and assess climatic controls among biomes. On average,
belowground carbon productivity is estimated as 24.7 Pg y−1,
accounting for 46% of total terrestrial carbon fixation. Across bi-
omes, belowground productivity increases with mean annual pre-
cipitation, although the rate of increase diminishes with increasing
precipitation. The fraction of total net productivity allocated
belowground exceeds 50% in a large fraction of terrestrial ecosys-
tems and decreases from arid to humid ecosystems. This work
adds to our understanding of the belowground carbon productiv-
ity response to climate change and provides a comprehensive
global quantification of root/belowground productivity that will
aid the budgeting and modeling of the global carbon cycle.
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Terrestrial ecosystems annually offset approximately 20% of
the carbon dioxide in anthropogenic emissions (1), providing

a crucial ecosystem service under the Anthropocene. This carbon
sequestration results from the excess of net primary production
(NPP) over heterotrophic respiration (2). Plants allocate a sig-
nificant fraction of total net primary production belowground,
primarily to roots (3). Belowground net primary productivity
(BNPP) strongly affects the global carbon cycle, as root growth
(4) and rhizodeposition (5) are the main sources of soil organic
carbon. Functionally, roots are the main belowground resource
acquisition organs and play an important role in the uptake of
water and nutrients supporting global productivity (6). In addi-
tion, belowground productivity is the energy source supporting
soil microbial and faunal life and a vast assemblage of key eco-
logical processes (7). Despite the significant importance of this
carbon cycling pathway, however, some basic processes, such as
climatic controls of global BNPP and primary productivity allo-
cation patterns among biomes, remain underexplored, hindering
our understanding of the mechanisms controlling the most un-
certain component of the global carbon budget (8).
Current global carbon cycle modeling and budgeting efforts

draw on a vast literature regarding patterns and controls of total
and aboveground net primary productivity from local to global
scales (2, 9–11). However, the carbon allocated belowground
cycles at different rates and is governed by different drivers than
aboveground carbon (12). Individual field studies have shown
contrasting BNPP responses to environmental variables. In
water-limited ecosystems, such as deserts, grasslands, shrublands,
and savannas, BNPP increases with annual precipitation (13),
with a mixed response to grazing (14). In forest ecosystems,
BNPP is affected by belowground resources, such as nutrient
availability and soil moisture, in temperate sites (15) and by light

and temperature in tropical ecosystems (16). However, there is
no unifying analysis exploring global BNPP patterns across bi-
omes using a consistent methodology. The following questions
remain unanswered: What is the global magnitude of BNPP?
Does BNPP change with precipitation in a similar fashion as
aboveground net productivity (ANPP)? Does the response of
BNPP to climate vary among biomes?
Our present work addressed four objectives: (i) to estimate

BNPP at global scale, (ii) to assess the relative importance of
biome-specific BNPP in the global carbon cycle, (iii) to investi-
gate the effect of climate and biome type on BNPP and the
fraction of total net primary productivity allocated belowground
(F-BNPP = BNPP/[BNPP + ANPP]); and (iv) to explore global
geographical patterns of BNPP and F-BNPP. Here we present an
approach to studying global patterns and controls of BNPP and
F-BNPP that combines complementary data types.

Results and Discussion
Global BNPP Estimation. NPP is defined as the rate of plant or-
ganic matter accumulation exceeding plant respiratory efflux
during a period of measurement (17). BNPP, the fraction of NPP
occurring in the soil, is not quantifiable in a strict sense (18).
Conceptually, BNPP equals the sum of the positive changes in
belowground biomass, the amount of biomass consumed by
herbivores, the amount of biomass lost to death, and the amount
of rhizodeposits during a specific time interval (17). Given the
difficulty in estimating all BNPP components (19, 20), most
previous studies have focused on root production, defined as the
increase in live root biomass plus root mortality per unit of time.
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Recent studies have highlighted the importance of rhizodeposits as a
major input to soil carbon formation (5). Here we estimated BNPP as
the difference between satellite-derived total NPP and mean ANPP
from field observations at 111 sites (SI Appendix, Fig. S1):

Estimated  BNPPsite = satellite NPPsite   –  field ANPPsite. [1]

The derivation of NPP from satellite information follows
original ideas outlined by Monteith (21) suggesting that NPP is
related to the amount of solar energy absorbed by plants. Sat-
ellite measurements of absorbed photosynthetically active radi-
ation multiplied by energy conversion efficiency result in widely
used estimates of total NPP (22), the sum of what is allocated
aboveground and belowground. The energy conversion coeffi-
cient plays a key role in the estimation of NPP. The current
version of the US National Aeronautics and Space Administra-
tion (NASA) NPP product uses a potential energy conversion
efficiency obtained from wheat crop values, and the Biome BGC
model sets climatic and biogeochemical constraints (23). This
way, each location at each time point has a specific conversion
efficiency that considers precipitation, temperature, and nutrient
availability, among other variables. However, such efficiency per-
tains to total NPP and does not allow for estimation of individual
components of productivity either aboveground or belowground.
Ecologists use various approaches to measure ANPP and

BNPP in the field. The most common include harvesting of

biomass aboveground or ingrowth cores belowground and esti-
mating productivity as the increase in biomass through time (19,
24). We combined field and satellite approaches to estimate
BNPP (Eq. 1) and validated our BNPP estimates against direct
field root productivity (RP) measurements (SI Appendix, Fig.
S2). We used 15-y mean NPP derived from satellite data and the
mean ANPP from field measurements for the longest record
possible in 111 sites around the world (SI Appendix, Table S5).
Long-term satellite NPP and field ANPP data capture major
global patterns incorporating year-to-year variations in produc-
tivity. Similarly, we only included sites that measured produc-
tivity in multiple plots or locations within a site, to include spatial
variability and obtain a representative estimate of local produc-
tivity. We took this conservative approach to minimize errors
due to different scales of field and satellite observations.
Estimated BNPP was closely related to RP field observations

across 40 sites (slope = 0.83, P = 0.0001, R2 = 0.61, n = 40) (SI
Appendix, Fig. S2). This relationship is notable, given that field
data were collected using different methods and came from di-
verse ecosystems that varied with respect to climate, species
composition, and soil type. The slope of the model is not sig-
nificantly different from 1 (95% CI = 0.61 to 1.05), whereas the
intercept is significantly different from 0 (intercept = 225.1, P =
0.0001), highlighting the importance of other components of
BNPP beyond RP across biomes (25). The relatively strong
correlation between field RP and estimated BNPP may be the
result of greater differences among sites compared with differ-
ences among time periods and methods.

Global BNPP and F-BNPP and Their Controls. Long-term mean global
BNPP totaled 24.7 ± 5.7 Pg C y−1 (Fig. 1 and Table 1). This value
indicates that at the global scale, BNPP is ∼46% of total ter-
restrial NPP. This global value is smaller than most previous
estimates based on individual sites, in which grassland F-BNPP
ranged from 50% to 66% (26), forest ecosystem F-BNPP ranged
from 20% to 65% (27), and shrubland F-BNPP ranged from 58%
to 78% (28). We suggest that these previous estimates could
have been driven by a focus on short-stature ecosystems, which
tend to have a larger F-BNPP than forest ecosystems. The con-
tributions of the different biomes to global BNPP depend on
their mean BNPP per unit area and the areal extent. Shrublands
and savannas contribute the most to global BNPP because of
their large cover and relatively large F-BNPP. The next greatest
contributor is broadleaf forests, which have a higher BNPP per
unit area but a smaller areal extent (Table 1).
BNPP increased nonlinearly from arid to humid sites, showing

a decreasing rate of increase with precipitation (Fig. 2). The
nonlinear nature of the relationship between BNPP and mean
annual precipitation (MAP) provides evidence of a strong water
limitation of BNPP in arid ecosystems that decreases as the MAP
increases to a point at which BNPP is probably limited by re-
sources other than water. We suggest that the BNPP:MAP slope
is associated with the frequency at which water availability limits
primary productivity, which declines as MAP increases and other
factors start to contribute more strongly (29). The shape of the

Fig. 1. Global BNPP and its partitioning among biomes. Total Global BNPP
was 24.7 ± 5.7 Pg C y−1 BNPP was estimated using the best model according
to AIC scores relating BNPP and MAP (SI Appendix, Table S1). CIs for each
biome are presented in Table 1.

Table 1. Global and biome-scale belowground productivity

Parameter Needleleaf forest Broadleaf forest Mixed forest
Shrublands and

savannas Grasslands Croplands Global

BNPP, Pg C y−1 1.8 ± 0.38 5.8 ± 0.89 1.9 ± 0.33 10.3 ± 2.4 2.3 ± 0.62 2.7 ± 0.81 24.7 ± 5.7
Mean F-BNPP, % 58 ± 4.3 41 ± 4.8 54 ± 3.9 61 ± 4.8 64 ± 5 32 ± 4 46 ± 7.4
Mean BNPP, g m−2 y−1 227 ± 49 336 ± 52 251 ± 46 210 ± 53 194 ± 55 152 ± 47 220 ± 76
Biome area, millions of km2 7.6 17.1 7.3 45.3 11.1 17.5 106

Shown are total BNPP, mean F-BNPP, mean BNPP per unit area, and areal extent for six biomes and the total for terrestrial ecosystems. Values represent
total or mean ± 2 SE. BNPP was estimated using a global model relating BNPP and MAP (Fig. 2) for each pixel and summing all pixels for each biome. F-BNPP
was estimated using a global model relating F-BNPP and MAP (Fig. 3) for each pixel and calculating the average of all pixels for each biome.
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BNPP:MAP relationship is similar to that of ANPP (SI Appendix,
Fig. S4) (30) and total productivity (SI Appendix, Fig. S3).
Within biomes, only shrublands and savannas showed a sig-

nificant BNPP increase with MAP, whereas all other biomes
showed a nonsignificant relationship to precipitation (SI Ap-
pendix, Table S3). The lack of response of BNPP to MAP is
surprising for the grassland biome, which typically shows a strong
positive relationship between ANPP and precipitation (31). We
suggest that the lack of response of grassland BNPP to MAP can
be explained by the sharp decline in F-BNPP with MAP, which
offsets the effects of increasing NPP. In contrast, forest BNPP is
likely controlled by nutrient availability (32) or incoming solar
radiation (33), explaining the flattening of the curve at high MAP.
Globally, MAP is the climatic variable accounting for most of

the spatial variation in BNPP. We fitted 20 different mixed
models, including linear and nonlinear combinations of BNPP,
as a function of ten bioclimatic variables (34). We also included a
model considering a precipitation by temperature interaction
based on previous findings in forest ecosystems (35). A loga-
rithmic model of BNPP as a function of MAP resulted in the
lowest AIC score (SI Appendix, Table S1). The other nine cli-
matic variables included precipitation and temperature for the
wettest, driest, warmest, and coldest quarter of the year.
The F-BNPP has multiple implications for ecosystem func-

tioning (36, 37). The functional balance theory states that plants
may adjust biomass allocation in a way that minimizes resource
limitation (38). Allocation aboveground generally promotes leaf
area, transpiration, and photosynthesis, whereas allocation be-
lowground stimulates the acquisition of water and nutrients (39).
The fraction of total carbon fixation allocated belowground has
further implications for carbon sequestration in terrestrial eco-
systems (40), because belowground carbon has a much longer
residence time than aboveground carbon (41) due to a slower
decomposition rate (42). Climatic and environmental conditions
influence F-BNPP in diverse ways (43, 44). It is generally accepted
that plants allocate relatively larger fractions of productivity

belowground under increasing drought conditions (20) or when
limited by soil nutrient availability (45, 46). Enhanced carbon di-
oxide concentration in the atmosphere can have direct impacts on
allocation (27) or affect F-BNPP through changes in nitrogen lim-
itation (39). The specific plant species composition across biomes
also constrains the allocation of primary production in different
ecosystems (3).
F-BNPP was found to decrease logarithmically with increasing

MAP at the global scale (Fig. 3 and SI Appendix, Table S2),
ranging from ∼70% in arid ecosystems to ∼35% in humid eco-
systems. Values of F-BNPP and the relationship between
F-BNPP and MAP (SI Appendix, Fig. S5) agree with a synthesis
of previous data (44, 47), providing independent support for the
results obtained using a combination of field data and remote
sensing data. Ecosystem carbon allocation reflects plant alloca-
tion to roots vs. aboveground organs such as leaves, branches,
and twigs (37). Plant species that evolved in arid ecosystems may
have a competitive advantage, with allocation patterns that
destine more resources for belowground, enhancing their ca-
pacity for acquiring water while minimizing water loss through
transpiration. In contrast, plant species that evolved in more
mesic environments, such as forest ecosystems, may exhibit the
opposite allocation pattern (32, 43). Water-limited ecosystems
such as deserts, grasslands, and shrublands allocate a larger
fraction of fixed carbon belowground (Table 1). There is evi-
dence of a strong water limitation of primary production in
drylands that gradually switches to nitrogen limitation (29) and
then to multiple nutrient limitation (48) as MAP increases.
Forest ecosystems transition from colimitation by belowground
and aboveground resources due to temperature-limited nutrient
mineralization in boreal and temperate forests (49) to limitation
by aboveground resources in tropical ecosystems (32). Along a
latitudinal gradient, symbiotic associations typical at high-
latitude forests are replaced by adaptations to fast biogeo-
chemical cycling at low latitudes (32). Therefore, tropical forests
show the smallest fraction of NPP allocated belowground among
unmanaged ecosystems. Finally, croplands allocate the smallest

Fig. 2. At the global scale, BNPP increases with MAP, but the rate of in-
crease decreases with precipitation. Individual biomes have idiosyncratic
responses of belowground production to precipitation increasing or de-
creasing with MAP (BNPP at the global scale = −688 + 184 * log (MAP),
Plogarithmic term < 0.001, ΔAIC = 4.45, R2

conditional = 0.36). These models rep-
resent the best fit among linear and nonlinear models compared using the
AIC. Colored lines indicate linear trends for each biome. The shaded blue
region around the blue line represents the 95% CI.

Fig. 3. At the global scale, the F-BNPP declined exponentially with MAP.
Biomes showed idiosyncratic linear responses to MAP, with slopes ranging
from negative to positive F-BNPP as a function of MAP (F-BNPP = 146 − 13.95
* log (MAP), P logarithmic term < 0.0001, ΔAIC = 10.25, R2

conditional = 0.32). These
models represent the best fit among linear and nonlinear models compared
using the AIC. Colored lines indicate trends for each biome. The shaded blue
region around the blue line represents the 95% CI.
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fraction of productivity to belowground organs, likely due to the
historical breeding aimed at increasing allocation to harvestable
products and to growth under fertilization and irrigation conditions.
This study addresses the climatic controls of BNPP and

F-BNPP and also suggests a potential effect of land use change.
Phenomena such as agricultural expansion may result in biome
shifts that lead to changes in BNPP and F-BNPP. Even though
croplands maintain relatively high total productivity, the small
fraction of productivity allocated belowground by crops results in
low BNPP for this biome. Agricultural expansion may lead to net
soil carbon release due to drastic changes in productivity allo-
cation in addition to the enhanced decomposition resulting from
tillage (42).

Conclusion
Geographic patterns of BNPP reflect those of total productivity
(Fig. 4A), with high productivity in tropical ecosystems de-
creasing toward arid ecosystems. Patterns of F-BNPP are op-
posite of those of BNPP, with relatively larger belowground
allocation in arid ecosystems compared with mesic ecosystems
(Fig. 4B). In synthesis, the contribution of biome to global BNPP
is associated with NPP but is modulated by allocation patterns.
Spatial patterns of BNPP and their correlation with precipitation
gradients provide hints about the consequences of climate
change. However, ecologists have long recognized the differ-
ences between controls of productivity in space and in time (50).
Differences in productivity among locations with different MAP
levels are much larger than changes in productivity due to
intrasite precipitation variation of similar magnitude occurring
from year to year. The paucity of long-term BNPP and F-BNPP

data, particularly in forest ecosystems, constrained our ability to
assess patterns over time. Further investigations of BNPP and
F-BNPP responses to changes in precipitation over time are
needed to accurately estimate the effects of the expected changes
in precipitation amount and frequency of extreme events on the
fate of carbon fluxes and stocks. Experimental field studies of
BNPP and F-BNPP in which precipitation and nutrients are
manipulated while other drivers are kept constant would be
particularly useful for identifying cause-and-effect relationships.
These studies would complement the more abundant observa-
tional studies included in this work. Finally, the insights gained
here are relevant to the understanding and modeling of the
carbon cycle, given that BNPP remains the least constrained
component of the global carbon budget (8).

Materials and Methods
To address our study objectives, we combined data from complementary
sources, including field ANPP, field RP, and satellite-derived NPP data, to
estimate BNPP. We also used interpolated climate data as a consistent source
of climatic variables across sites (34).

Data Collection.
Field ANPP and RP.We collected field ANPP data for the longest record possible
from 111 locations around the world covering all major biomes (SI Appendix,
Fig. S1). Our database spans forest cover types including broadleaf, needle
leaf, evergreen, deciduous, and mixed forest; open and closed shrublands;
savannas and woody savannas; croplands; and grasslands ranging from de-
sert steppes to prairies. We collected ANPP estimates that included fine and
coarse components (ANPP = ANPP_foliage + ANPP_woody) and included
only sites that reported multiple years and multiple plots. Including multiple
years and multiple plots provided a broad estimation of the productivity
that integrates year-to-year variation and intrasite spatial heterogeneity.

Fig. 4. Geographical patterns of BNPP and the fraction of productivity allocated belowground. (A) Global BNPP geographical patterns across major biomes.
(B) Global F-BNPP patterns across major biomes. BNPP and F-BNPP were estimated using the best-fitting model after testing combinations of 10 climatic
variables and precipitation by temperature interactions (SI Appendix, Tables S1 and S2).

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.2006715117 Gherardi and Sala

D
ow

nl
oa

de
d 

at
 A

R
IZ

O
N

A
 S

T
A

T
E

 U
N

IV
 L

IB
R

A
R

IE
 o

n 
A

ug
us

t 4
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2006715117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2006715117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2006715117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2006715117


Therefore, our criteria for using multiple years and plots reflect our ap-
proach to matching the scales of field and remotely sensed data, which have
a resolution of 1 km2 and an average of multiple years. Data limitations
forced us to group land cover types into six biome categories. We combined
deciduous and evergreen forests within each forest category as needleleaf,
broadleaf, and mixed forests. We also grouped open shrublands, closed
shrublands, savannas and woody savannas as one category for shrublands
and savannas. Grasslands and croplands represent the original cover type
classification. We collected data from existing databases, including the Long-
Term Ecological Research network, the EcoTrends project, the Oak Ridge
National Laboratory (ORNL) net primary production database, and the ForC
database (51) (SI Appendix, Table S5). We also used data from publications
or directly from researchers whenever it was not available through a data
repository. In addition, we collected field RP data (RP = P_fine roots +
P_coarse roots) from the ORNL and ForC databases and from publications for
40 sites to validate our estimated BNPP.
Satellite-derived productivity data. We extracted total NPP data available from
the NASA Earth Observing System, which produces annual estimates of net
primary productivity (NPP) of the entire terrestrial earth surface at 1-km
spatial resolution derived from the Moderate-Resolution Imaging Spectror-
adiometer (MODIS). The derivation of NPP has three components: (i) the
assumption that NPP is related to the amount of solar energy absorbed by
the Earth’s surface; (ii) the theory relating absorbed solar energy and spec-
tral indices of vegetation; and (iii) the assumption that the actual energy
conversion efficiency is limited by climatic and biophysical constraints to
below the theoretical potential value. A more detailed description of the
algorithm and product derivation can be found in the user guide (www.ntsg.
umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf) and other reports (22,
52). Despite some recent criticism, we argue that this NPP product is reliable
at the broad scales used in this study. Finally, the MODIS NPP shows
agreement with modeled and in situ observations of productivity (53).

Tohavea consistent land cover classification source for all sites,weextracted land
cover classes for each site from theMODIS land cover product MOD12Q1 based on
Boston University’s UMD classification scheme (54).
Interpolated climate data. We obtained data for 10 bioclimatic variables from
Worldclim version 2 (34). The bioclimatic variables included MAP, mean
annual temperature, and mean temperature and precipitation for different
quarters of the year, such as the wettest quarter, driest quarter, warmest
quarter, and coldest quarter. This database consists of monthly interpolated
data from thousands of weather stations across 23 regions of varying size
classified based on station density. This database is widely used, reliable, and
consistent across sites.

BNPP Estimation.We estimated BNPP by subtracting ANPP from total NPP [1]:

EstimatedBNPPs = NPPs − ANPPs,

where BNPPs is the estimated mean BNPP at site s, NPPs is the 15-y mean NPP
at site s, and ANPPs is the mean ANPP at site s for all available years. The
estimated BNPP correlated with field measurements of RP across 40 sites at
which the slope of the field RP vs. the estimated BNPP did not differ sig-
nificantly from 1 (SI Appendix, Fig. S2). However, the intercept of such re-
lationships did differ significantly from 0, suggesting that RP underestimates
BNPP. We estimated cropland BNPP by multiplying total NPP by the mean of
known root:shoot ratios estimated for the most common crops (55). Such
root:shoot values match independent estimations specific for the cropland
biome (47). Since crops rotate in unpredictable manner over time and vary
across countries, we assumed that the mean root:shoot ratio for annual
crops is a realistic coefficient for estimating mean long-term NPP partitioning.

In addition, we calculated the F-BNPP as the ratio of BNPP to total NPP for
each site and expressed it as a percentage.

Data Analysis. We used simple linear regression to assess the relationship
between RP from field measurements and estimated BNPP (SI Appendix, Fig.
S2). We then ran linear and nonlinear mixed-model analyses of mean-
estimated BNPP and F-BNPP as a function of each of the 10 bioclimatic
variables. We included bioclimatic variables as fixed effects and biome as a
random effect. We selected the best model using the Akaike information
criterion (AIC) (56). Of all models including combinations of precipitation
and temperature explanatory variables, a logarithmic model with MAP as an
explanatory variable for BNPP had the lowest AIC value (SI Appendix, Table
S1). All analyses, figure preparation, and data processing were carried out
using R version 3.5.2 (57).

Global Belowground Productivity Estimation. To estimate global belowground
productivity, we used the best model out of 25 models selected using the AIC
(SI Appendix, Table S1) and related BNPP to all climatic variable combina-
tions including linear and nonlinear alternatives. A nonlinear model in-
cluding MAP as a single predictor resulted the best model for estimating
BNPP at the global scale. We then estimated belowground productivity for
each pixel using the Worldclim MAP product (Fig. 4A). Finally, we summed
the BNPP of each pixel for each biome to estimate the total BNPP per biome
(Fig. 1). In addition, we estimated the mean F-BNPP using the best model
(Fig. 4B) and calculated mean biome F-BNPP as the mean of all pixels for
each biome (Fig. 1). For croplands, we used a fixed mean allocation ratio of
0.32 from the literature (55) as the mean global F-BNPP and estimated BNPP
by multiplying the NPP by this coefficient.

Global Belowground Productivity Uncertainty Estimation. To assess the un-
certainty around our BNPP estimate, we calculated 95% confidence intervals
(CIs) for the mixed-model fit of mean BNPP as a function of MAP (Figs. 2 and
3). This measure of uncertainty corresponds to the model, not to individual
points, meaning that there is a 95% chance that the model-fit line will fall
within that range. These bands result from doubling the SE from the gen-
eralized mixed model that considers fixed-effect error as well as the random
effects of different biomes. Error terms vary with the magnitude of the in-
dependent variable, increasing as it deviates from the mean. Therefore, we
extracted MAP-specific SEs from the output of the lme function in the nlme
package (58) and doubled them to estimate the CI limits of BNPP for each
grid cell using the raster package in R. Finally, we calculated the mean SE
and derived CI limits for each biome and globally, presented in Table 1.

Data Availability. All data used in this work are freely available from the
sources cited in the SI Appendix, Table S5. All code is available from the
corresponding author on reasonable request.
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