
1.  Introduction
Processes in arid and semi-arid ecosystems (i.e., drylands) are frequently characterized by a pulse dynamics 
framework, in which episodic precipitation events moisten dry soils, triggering brief pulses of biological activity 
and resource availability (Noy-Meir, 1973). Soil moisture pulses and consequent ecological responses are driven 
largely by the size and frequency of precipitation events. It is hypothesized that plants and soil microorganisms 
exhibit different sensitivities to pulses of soil moisture in these systems (Collins et  al.,  2014; Schwinning & 
Sala, 2004). While relatively small and infrequent rain events can activate microbially driven processes such 
as decomposition of soil organic matter (SOM) and nutrient mineralization in surface soils (Austin et al., 2004; 
Collins et  al.,  2008), larger or tightly clustered small rain events are typically necessary for deeper infiltra-
tion of soil moisture to trigger higher plant metabolism (Noy-Meir, 1973; Schwinning & Sala, 2004). Conse-
quently, differences in rainfall size and frequency may create a scenario of asynchronous resource availability 
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in pulse-driven drylands, whereby plant and soil microbial processes are hypothesized to become temporarily 
uncoupled (Austin et al., 2004; Collins et al., 2014, 2008).

Nitrogen (N) is second to water as the most limiting resource for aboveground primary production in drylands 
(Austin et al., 2004; Yahdjian et al., 2011). Indeed, soils in water-limited ecosystems throughout the southwestern 
United States (US) contain especially low amounts of total available nitrogen (Zak et al., 1994). Most nitrogen 
in the soil is in the form of SOM and generally unavailable for direct assimilation by plants. Upon activation 
by episodic rain events, microbes decompose SOM, thereby liberating plant available nitrogen in the forms of 
ammonium (NH4 +-N) and nitrate (NO3 −-N). This pulse of microbially mediated nutrient mineralization that 
occurs in response to the wetting of dry soils, termed the “Birch effect,” frequently involves a rapid release of 
enzymes that facilitate nutrient acquisition from the surrounding environment, particularly if substrates are of low 
quality (Birch, 1958; Borken & Matzner, 2009; Robertson & Groffman, 2015). Enzyme expression is regulated 
by environmental signals, thus balancing microbial demand for limiting nutrients like nitrogen with the energetic 
costs associated with enzyme production (Sinsabaugh & Follstad Shah, 2012; Wallenstein & Weintraub, 2008; 
Xiao et al., 2018). However, during extended dry periods, irregular microbial activities, combined with little or 
no plant uptake (Austin et al., 2004; Birch, 1958; Borken & Matzner, 2009), can result in the accumulation of soil 
inorganic nitrogen (Augustine & McNaughton, 2004; White et al., 2004).

The Birch effect is most pronounced in arid (60–250 mm y −1) and semi-arid (150–500 mm y −1) regions that 
experience strong seasonal precipitation (Austin et al., 2004) like the predominantly warm and dry southwestern 
US where peak annual net primary production is driven by the North American Monsoon (Muldavin et al., 2008; 
Pennington & Collins, 2007). Historically this region has experienced frequent, but weak pulses of soil mois-
ture throughout the summer monsoon, with rain events typically ranging from 2 to 5 mm in size and separated 
by brief intervening dry periods (Loik et al., 2004). Recent empirical analyses of meteorological data collected 
over the past century have revealed increasingly variable precipitation patterns throughout the southwestern US 
(Maurer et al., 2020; F. Zhang et al., 2021). In the northern Chihuahuan Desert, for example, rain event size has 
been decreasing, while the frequency of rain events, along with the prevalence of extreme wet and dry periods, 
has increased (Petrie et al., 2014). Regional climate models project further intensification of the hydrologic cycle, 
particularly during the summer monsoon (Diffenbaugh et al., 2008; Moustakis et al., 2021), with a higher occur-
rence of extreme precipitation events (Donat et al., 2016; Easterling et al., 2017, 2000) and prolonged dry spells 
(Bradford et al., 2020; Cook et al., 2021).

Future changes in rainfall patterns are likely to have significant consequences on the availability of limiting 
resources to primary production in drylands, especially if events become larger and more sporadic. Building 
on the pulse dynamics framework, the Threshold-Delay Nutrient Dynamics conceptual model suggests larger 
pulses of soil moisture not only stimulate primary production but also enable longer persistence of soil microbial 
activities and associated biogeochemical processes (Collins et al., 2008). Yet field-based studies investigating 
the temporal dynamics of plant available nitrogen in the context of altered precipitation regimes in drylands are 
not only uncommon but have also produced inconsistent results (Austin et al., 2004; Borken & Matzner, 2009; 
Epstein et al., 2019; Nielsen & Ball, 2015; Song et al., 2020). For example, small frequent rain events stimu-
lated the greatest nitrogen mineralization rates throughout the growing season in Patagonian steppe (Yahdjian & 
Sala, 2010). In contrast, small frequent rain events resulted in the lowest mineralization rates and greatest losses 
of nitrogen in Chihuahuan Desert shrubland (Fisher et al., 1987). Yet, large infrequent rain events resulted in 
greater nitrogen losses in Patagonian steppe as well as piñon-juniper woodland in the southwestern US (Cregger 
et al., 2014; Yahdjian & Sala, 2010). On the other hand, large rain events resulted in greater mineralization rates in 
Colorado shortgrass steppe (Dijkstra et al., 2012; D. S. Schimel & Parton, 1986), as well as pulses of plant avail-
able nitrogen in the Great Basin and Colorado shortgrass steppe (Cui & Caldwell, 1997; Dijkstra et al., 2012). 
Yet a small rain event in Colorado shortgrass steppe stimulated a pulse of increased plant uptake that persisted 
longer than belowground processes (Dijkstra et al., 2012). Thus, a major knowledge gap exists with respect to 
how availability of the two most limiting resources for primary production in drylands will respond to future 
climate change.

To determine if nitrogen availability pulses in response to rainfall in a dryland ecosystem as predicted by the pulse 
dynamics framework, we examined the daily and seasonal responses of plant available nitrogen to rain events 
that differed in size and frequency throughout a summer monsoon in a northern Chihuahuan Desert grassland. 
We were specifically interested in addressing the following questions: (a) Does plant available nitrogen pulse in 
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response to monsoon rainfall, and if so, for how long? (b) How is plant available nitrogen affected by differences 
in rain event size and frequency? (c) How does the availability of nitrogen evolve over the growing season? (d) 
What are some potential drivers influencing nitrogen availability at the seasonal scale? To answer these ques-
tions, we measured soil inorganic nitrogen and related parameters in an existing rainfall manipulation experiment 
consisting of replicated treatment plots that receive a series of small frequent or large infrequent rain events 
throughout the summer growing season.

2.  Materials and Methods
2.1.  Site Description

This study was conducted during the 2014 summer monsoon (July–September) in a northern Chihuahuan Desert 
grassland dominated by black grama (Bouteloua eriopoda), a native shallow-rooted perennial C4 grass. The 
Monsoon Rainfall Manipulation Experiment (MRME; 34.3441°N, 106.7272°W, elevation 1,604 m), located in 
the Sevilleta National Wildlife Refuge (NWR) in central New Mexico, USA, served as the experimental platform 
for this study. MRME was established in 2007 to investigate the effects of increased variability in monsoon rain-
fall on ecosystem processes in a desert grassland. In August 2009, a lightning-caused wildfire burned through 
the experiment.

MRME consists of thirteen 8 m by 13 m plots, all of which receive ambient precipitation throughout the year. 
Three plots serve as ambient controls, while the remaining 10 receive one of two experimentally applied rain-
fall addition treatments for 12 consecutive weeks during the summer monsoon (Thomey et al., 2011). “Small 
frequent” plots (n = 5) receive a 5 mm rainfall addition once per week (n = 12), whereas “large infrequent” plots 
(n = 5) receive a 20 mm rainfall addition once per month (n = 3). Thus, all rainfall addition plots receive the 
same amount of supplemental rainfall by the end of the summer monsoon (60 mm). Onsite storage tanks provide 
a reservoir for water obtained from a reverse-osmosis system. Treatments occur via raindrop-quality overhead 
sprinkler systems, which are applied shortly after dawn when winds are minimal and diurnal soil temperatures 
are at their lowest, thereby minimizing evaporative loss. Sensor arrays within each plot continuously record 
soil moisture as an integrated measurement of soil volumetric water content (SVWC) from 0 to 16 cm (CS616; 
Campbell Scientific Inc., Logan, UT, USA) as well as soil temperature at a depth of 8 cm (CS107; Campbell 
Scientific Inc.).

Growing season precipitation in the Sevilleta NWR is highly variable within and between years, originat-
ing primarily from localized convective thunderstorms driven by the North American Monsoon (Muldavin 
et al., 2008; Pennington & Collins, 2007). The summer monsoon is typically preceded by a 2-month period with 
high daytime temperatures and limited precipitation (Notaro et al., 2010). From 1990 to 2020, mean annual water 
year precipitation recorded at a nearby meteorological station (34.3592°N, 106.6911°W, elevation 1,600 m) was 
233 ± 9.6 mm, with 118 ± 8.3 mm falling during the summer monsoon, while mean annual temperature was 
13.7°C ± 0.0°C, with average monthly temperatures ranging from 25.4°C ± 0.2°C in July to 1.3°C ± 0.3°C in 
December (Moore, 2021). Atmospheric nitrogen deposition occurs at a rate of 0.2 g m −2 yr −1 (Báez et al., 2007). 
Soils are alkaline, with a pH of 8.5 ± 0.2 (Crenshaw et al., 2008), and are classified in the Turney loam series, 
formed by calcareous aeolian and alluvial deposits (Soil Survey Staff, 2019). Soil bulk density is 1.51 g cm −3 and 
porosity is 43% (Thomey et al., 2011; Vargas et al., 2012), with a texture distribution in the upper 20 cm consist-
ing of 68% sand, 22% silt, and 10% clay, with <10% as CaCO3 (Kieft et al., 1998).

2.2.  Soil Collection

Dryland ecosystems are characterized by islands of fertility, where SOM, microbial ecoenzymatic activities, 
and nutrient availability are higher under and adjacent to plants compared to areas of unvegetated soil (Kieft 
et al., 1998; Ladwig et al., 2015; Schlesinger et al., 1990; Stursova et al., 2006). There is also some evidence that 
fungal hyphae can transport nitrogen fixed by biological soil crusts to plants located up to 1 m away (Carvajal Janke 
& Coe, 2021; Green et al., 2008). Prior to the summer monsoon we installed three soil collars (25.4 cm wide and 
15 cm deep) per plot, each positioned around a randomly selected tussock of black grama to prevent plant roots 
and soil microbes from acquiring outside resources as well as to limit potential nitrogen losses through overland 
flow. We further reduced plant uptake of nitrogen, which is driven by transpiration, by clipping tussocks prior to 
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and throughout the summer monsoon so that we could more effectively detect pulses of soil inorganic nitrogen 
that would be available for plant use.

Rhizosphere soil samples (0–15 cm depth) were collected from within each soil collar using a 2.22 cm diameter 
hammer-head soil core sampler (AMS Inc., American Falls, ID, USA) during weeks in which both small frequent 
and large infrequent rainfall addition treatments were applied (n = 3). The first soil collections of each sampling 
period took place around sunrise, approximately 2 hr before rainfall addition treatments were applied (Sampling 
Day 0). Subsequent collections of soil occurred 1, 2, 3, 4, and 6 days following the rainfall addition treatments to 
assess pulse duration and associated responses. Intensive sampling campaigns occurred 3–9 July (sampling days 
J0-J6), 29 July to 4 August (A0-A6), and 26 August to 1 September (S0-S6) during the 2014 summer monsoon. 
Soil samples were bulked per plot and homogenized by gentle mixing in labeled quart-sized zip-top freezer bags 
that were immediately put on ice. Since collection, soil samples (n = 234) have been stored continuously at 
−20°C for subsequent laboratory analyses.

2.3.  Nitrogen Availability

To measure plant available nitrogen, 10 g subsamples of wet mass soil were extracted following collection with 
100 mL of 2M potassium chloride (KCl) solution containing 0.5 μg phenylmercuric acetate (PMA) for the anal-
ysis of extractable NH4 +-N and NO3 −-N. PMA was used as a preservative to prevent microbial transformation of 
nitrogen during the interval between soil collection and analysis. Gravimetric soil water content of each sample 
was determined using a second 10 g subsample of wet mass soil that was desiccated at 105°C for 24 hr and 
reweighed. After settling at room temperature for at least 24 hr, each clarified KCl sample was decanted through 
a Kimwipe into corresponding centrifuge tubes, which were then stored at 1.6°C for a period of no longer than 
1  month. Each filtrate sample was analyzed for NH4 +-N and NO3 −-N (as nitrite (NO2 −-N)  +  NO3 −-N) on a 
Technicon AutoAnalyzer II (Technicon Corp., Tarrytown, NY, USA) following previously described methods 
(Crenshaw et al., 2008; Kieft et al., 1998; White et al., 2004).

Plant Root Simulator (PRS®) probes (Western Ag Innovations, Saskatoon, Saskatchewan, CA) were buried 
within the rooting zone of a randomly selected, uncollared, and unclipped tussock of black grama in each plot 
on 2 July 2014 (Collins, 2020). PRS® probes mimic plant uptake using ion-exchange resin membranes and were 
used to provide an integrated estimate of plant available nitrogen over the summer monsoon. Upon removal on 
10 October 2014, probes were rinsed in deionized water and shipped to the manufacturer, where they were subse-
quently analyzed for NH4 +-N and NO3 −-N.

2.4.  Microbial Ecoenzymatic Activities

To gain additional insight regarding the evolution of nitrogen availability over the summer monsoon, all soil 
samples were fluorometrically assayed to assess the potential hydrolytic activities of two nitrogen-acquiring 
enzymes. Given that the majority of soil organic nitrogen is contained in amino acids (peptides, proteins) and 
amino sugars (chitin, peptidoglycan), we measured the potential activities of leucyl aminopeptidase (LAP), which 
hydrolyzes leucine and other amino acids from the N-terminus of polypeptides, and β-1,4-N-acetylglucosaminidase 
(NAG), which degrades amino sugars contained in microbial cell walls to mobilize nitrogen (Sinsabaugh & 
Follstad Shah, 2012; Sinsabaugh et al., 2008; Zhou et al., 2013). Soil enzyme assays were performed following 
previously described methods that attempt to mimic the soil environment to approximate potential ecoenzymatic 
activities under natural conditions (e.g., Saiya-Cork et al., 2002; Stursova et al., 2006). Further methodological 
details are provided in the Supporting Information (Text S1 in Supporting Information S1).

2.5.  Soil Organic Matter

To estimate the percentage of SOM contained in each sample as a proxy for substrate availability, we used the 
loss on ignition approach. Briefly, 10 g subsamples of wet mass soil were dried at 105°C for 2 hr, after which 
pre-ignition weights for each sample were determined. Dried soils were then placed in a muffle furnace and 
ignited for 2 hr at 360°C to oxidize organic matter to CO2 while preventing the loss of CaCO3 (H. Zhang & 
Wang, 2014). The percentage of organic matter in each sample was calculated as the difference between pre- and 
post-ignition weights divided by the pre-ignition weight.
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2.6.  Statistical Analyses

All data analyses were conducted using R version 3.6.3 (R Core Team, 2020). To assess the pulse response 
and duration of soil moisture (as SVWC), plant available nitrogen (as extractable NH4 +-N and NO3 −-N), and 
nitrogen-acquiring microbial ecoenzymatic activities (NAG, LAP) to experimental rainfall addition treatments 
over the summer monsoon, we used linear mixed effect models to perform repeated measures analysis of variance 
(ANOVA). Models were constructed using the nlme package in R (Pinheiro et al., 2020), where treatment, day, 
month, and their interactions represented fixed effects and plot was the random effect. Models also included a 
continuous first order autoregressive correlation structure to account for temporal autocorrelation. Seasonally 
integrated nitrogen supply rates measured by the PRS® probes were analyzed similarly using simplified models 
where treatment was the fixed effect and plot was the random effect. Response variables were natural log trans-
formed to satisfy assumptions of normality (evaluated using Q-Q plots) and homoscedasticity (evaluated by 
plotting residuals against fitted values). Post-hoc Tukey's Honest Significant Difference pairwise comparisons 
were used to further investigate differences in treatment effects through time, which were considered statistically 
significant when p ≤ 0.05.

To provide a more holistic understanding of how plant available nitrogen (NH4 +-N and NO3 −-N) and associ-
ated soil parameters (e.g., nitrogen-acquiring microbial ecoenzymatic activities, SOM) interact and respond to 
differences in rainfall size and frequency at the seasonal scale, we built a structural equation model (SEM) using 
the lavaan package in R (Rosseel, 2012). SEM is ideal for developing a system-level understanding of complex 
relationships in multivariate datasets through partitioning direct and indirect effects among variables, distinguish-
ing the multiple pathways by which one variable can influence another, and estimating the strength of multiple 
effects (Eisenhauer et al., 2015). Spearman's rank order correlations of explanatory and response variables were 
conducted using the rcorr function in the Hmisc package in R (Harrell et al., 2020). Using a “weight-of-evidence” 
approach, significant correlations (Table S1 in Supporting Information  S1; p  ≤  0.05) aligning with a priori 
scientific knowledge informed the construction of a base model, which was further optimized by removing all 
non-significant paths (p ≥ 0.05), followed by the stepwise addition of new paths based on relevant modification 
indices until the best model fit was achieved (Eisenhauer et al., 2015; Grace, 2020). Since we were specifically 
interested in the effects of both rainfall size and rainfall frequency on plant available nitrogen over the growing 
season, exogenous variables included experimental rainfall addition treatment size and frequency along with 
sampling month. Rainfall size and frequency were predicted to covary as treatments were not completely inde-
pendent from each other. Rainfall size was specified as the amount of added rainfall per treatment event and 
rainfall frequency was specified as the total number of treatment events over the summer monsoon. Endogenous 
variables included soil moisture (as SVWC) and soil temperature averaged over the 24 hr preceding the end of 
each soil collection period (also predicted to covary), as well as SOM, LAP, and NAG. To satisfy assumptions 
of normality, SVWC, NH4 +-N, NO3 −-N, and NAG activity were natural log transformed and LAP activity was 
rescaled. To assess goodness of model fit, we used the model Chi-square statistic (χ 2) and three approximate fit 
indices: root mean square error of approximation (RMSEA), comparative fit index (CFI), and standardized root 
mean square residual (SRMR). An SEM is considered to be well fitted to the data when the χ 2 statistic is insignif-
icant (p ≥ 0.05), RMSEA ≤ 0.05 and its associated p-value ≥ 0.05, CFI ≥ 0.95, and SRMR ≤ 0.08 (Grace, 2020; 
Kline, 2016).

3.  Results
3.1.  Pre-Treatment

Prior to experimental rainfall addition treatments (i.e., on J0, A0, and S0), SVWC ranged from 7.7% ± 0.3% 
to 12.5% ± 0.7%, NH4 +-N from 1.91 ± 0.13 to 4.52 ± 0.39 μg N g −1 soil, and NO3 −-N from 1.44 ± 0.09 to 
2.44 ± 0.35 μg N g −1 soil from July to September (Figure 1; Table 1). There were no significant within-month 
pre-treatment differences in SVWC. The only significant within-month pre-treatment differences in plant avail-
able nitrogen occurred in August, when availability of extractable NO3 −-N was significantly lower in the large 
infrequent treatment than in the small frequent treatment (Table 1).

Pre-treatment soil temperatures decreased as the season progressed, ranging from 32.2°C ± 0.1°C in July to 
28.5°C ± 0.2°C in September. SOM content ranged from 1.64% ± 0.14% in August to 1.75% ± 0.12% in Septem-
ber. NAG activity ranged from 2.2 ± 0.2 nmol hr −1 g −1 in July to 3.7 ± 0.7 nmol hr −1 g −1 in September, while LAP 
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activity ranged from 31.8 ± 5.2 nmol hr −1 g −1 in September to 36.7 ± 4.9 nmol hr −1 g −1 in August. There were 
no significant within-month pre-treatment differences in soil temperature, SOM content, or nitrogen-acquiring 
microbial ecoenzymatic activities over the summer monsoon (Table S2 in Supporting Information S1).

3.2.  Pulse Response and Duration

Significant pulses of increased soil moisture availability were evident 1 day after large infrequent rainfall treat-
ments (i.e., on J1, A1, and S1), persisting for the duration of each monthly sampling campaign (Figures 1g–1i; 
Table 1). While small frequent rainfall treatments also increased soil moisture availability throughout the summer 
monsoon (Figures 1d–1f), the only significant pulse occurred in July, which persisted for the duration of the 
sampling campaign (Figure 1d; Table 1). Over the 24 hr following the first rainfall addition events in July, SVWC 
increased 113.7% in response to the large treatment and 14.6% in response to the small treatment. By September, 
these increases had reduced in magnitude to 75.7% and 4.0% respectively. Yet despite these distinct pulses of 
increased soil moisture availability, plant available nitrogen never exhibited a significant pulse in response to any 
treatment in any month, except for NH4 +-N 1 day after the large rainfall treatment in August (Figure 1h; Table 1). 

Figure 1.  Soil nitrogen availability responses to experimental rainfall addition treatments over the summer monsoon. Rows represent rainfall treatments, with ambient 
treatments in blue (a–c), small frequent treatments receiving 5 mm of added rainfall once per week in orange (d–f), and large infrequent treatments receiving 20 mm 
of added rainfall once per month in pink (g–i). Columns represent months (July–September) during which the three sampling campaigns occurred. Points represent 
mean extractable soil nitrogen (μg N g −1 soil; left y-axis) as NH4 +-N (closed circles) and NO3 −-N (open circles) measured each sampling day, with error bars indicating 
standard errors of the means. Gray lines and shading indicate soil volumetric water content (%; right y-axis) reported as continuous 15 min averages. Sampling days 
begin at the time soils were sampled, with dotted vertical lines (d–i) indicating the timing of rainfall addition treatments. Aboveground plant tissues were clipped at 
ground level prior to and throughout the summer monsoon to reduce nitrogen uptake.
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Similarly, nitrogen-acquiring microbial ecoenzymatic activities never pulsed in response to rainfall treatments 
over the summer monsoon (Table S2 in Supporting Information S1).

3.3.  Rainfall Size and Frequency

Mean soil moisture availability during post-treatment sampling periods (i.e., J1-6, A1-6, and S1-6) was consist-
ently highest following the large infrequent treatments (Figures 1g–1i), but this result was only significant in July 
(Table 1). There were no significant differences in post-treatment SVWC between the small frequent and ambient 
treatments in any month (Table 1).

Availability of net inorganic nitrogen (NH4 +-N + NO3 −-N) over post-treatment sampling periods was always 
significantly higher following the small frequent treatments than following the large infrequent treatments 
(Figure 2). Similarly, albeit not statistically significant, post-treatment availability of NH4 +-N was generally high-
est following small frequent treatments (Figures 1d–1f; Table 1). In contrast, availability of NO3 −-N was nearly 
always greatest in the ambient treatment (Figures 1b and 1c), particularly in comparison to the large infrequent 
treatments, which significantly reduced the availability of both NO3 −-N and net inorganic nitrogen over the 
season (Figures 1g–1i and 2; Table 1). Similarly, PRS® probe measurements of seasonally integrated net inor-
ganic nitrogen supply rates were also lowest in response to the large infrequent treatments; however, these results 
were not statistically significant (Figure S1 in Supporting Information S1).

SOM content and LAP activity over post-treatment sampling periods were typically highest in the ambient treat-
ments, while NAG activity was always highest following the small frequent treatments (Table S2 in Supporting 
Information S1). However, these trends were not significant. Post-treatment soil temperatures throughout the 
summer monsoon were consistently highest in the ambient treatments, but this trend was only significant during 
the first 24 hr following rainfall treatments (Table S2 in Supporting Information S1).

Figure 2.  Net inorganic nitrogen (NH4 +-N + NO3 −-N; μg N g −1 soil) responses to rainfall treatments (ambient, small 
frequent, large infrequent) averaged across each monthly (July–September) post-treatment sampling period (i.e., J1-6, 
A1-6, and S1-6). NH4 +-N, extractable soil ammonium (μg N g −1 soil); NO3 −-N, extractable soil nitrate (μg N g −1 soil). For 
each treatment,  a–c indicates a significant between-month difference in value. For each month,  x–z indicates a significant 
within-month difference in value among treatments. In other words, different letters reflect significant (p ≤ 0.05) differences 
among respective comparisons.
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3.4.  Seasonal Dynamics

Soil moisture availability increased over the summer monsoon in all treat-
ments, with post-treatment SVWC ranging from 8.8% ± 0.2% in the ambient 
treatment in July to 21.9% ± 1.0% following the large treatment in August 
(Table 1).

Post-treatment availability of NH4 +-N increased consistently over the season 
(Table 1), ranging from 1.16 ± 0.11 μg N g −1 soil in the ambient treatment in 
July (Figure 1a) to 4.83 ± 0.38 μg N g −1 soil in response to the small frequent 
treatment in September (Figure 1f). Post-treatment availability of NO3 −-N 
was more variable, with the only consistent seasonal increases occurring in 
the ambient treatment, ranging from 2.53 ± 0.22 μg N g −1 soil in July to 
5.00  ±  0.54  μg N g −1 soil in September (Figures  1a–1c; Table  1). Other-
wise, NO3 −-N availability peaked in August, then declined significantly by 
September in response to both rainfall addition treatments (Figures 1d–1i; 
Table 1). Overall, post-treatment amounts of net inorganic nitrogen increased 
consistently over the season, ranging from 2.59  ±  0.12  μg N g −1 soil in 
response to the large infrequent treatment in July to 8.75 ± 0.84 μg N g −1 soil 
in the ambient treatment in September (Figure 2).

Seasonal trends in post-treatment SOM content and nitrogen-acquiring 
microbial ecoenzymatic activities were largely insignificant (Table S2 in 
Supporting Information S1). While SOM content generally increased over 
the season regardless of treatment, LAP activity was more variable, gener-
ally increasing in the ambient treatment and declining in response to rain-
fall addition. Yet both rainfall treatments stimulated significantly greater 
NAG activity as the season progressed. Post-treatment soil temperatures in 
all treatments were significantly higher in July than in August or September 
(Table S2 in Supporting Information S1).

3.5.  Drivers of Nitrogen Availability Over the Summer Monsoon

Our SEM was well fitted to the data (χ 2(22, n = 234) = 29.66, p ≥ 0.05; 
RMSEA = 0.04 with CI90: (0.00, 0.07), p ≥ 0.05; CFI = 0.99; SRMR = 0.04), 
explaining 66% of the variance in NH4 +-N availability and 34% of the vari-
ance in NO3 −-N availability over the summer monsoon (Figure  3). Time 
was the strongest driver of NH4 +-N availability (Figure 3), which increased 
significantly over the growing season in all treatments (Figure 1; Table 1). 
Increased NAG activity was identified as a significant driver of increased 
nitrogen availability (especially NH4 +-N), whereas large rain events signifi-
cantly reduced plant available nitrogen (specifically NO3 −-N) throughout the 
season (Figures 1–3; Table 1). Similarly, large rain events drove the reduc-
tion of SOM content (Figure  3; Table S2 in Supporting Information  S1); 
however, SOM was not identified as a driver of nitrogen availability or 

nitrogen-acquiring microbial ecoenzymatic activities in this study (Figure 3). NAG activity was stimulated by 
greater soil moisture availability, particularly from frequent rain events that also stimulated the availability of 
NH4 +-N (Figure 3; Tables 1 and S2 in Supporting Information S1). In contrast, LAP activity, which was stimulated 
by infrequent and smaller rain events, drove reductions in NH4 +-N availability (Figure 3; Table S2 in Supporting 
Information S1). Finally, while higher soil temperatures were identified as a driver of increased NH4 +-N availa-
bility at the seasonal scale (Figure 3), we found plant available nitrogen was lowest early in the summer monsoon 
when temperatures were hottest (Figures 1 and 2; Tables 1 and S2 in Supporting Information S1).

Figure 3.  A structural equation model (SEM) depicting causal relationships 
among rainfall size and frequency (Rain Size and Rain Freq; orange), 
time (Month; orange) soil moisture and temperature (SVWC and STemp; 
yellow), soil organic matter (SOM; pink), nitrogen-acquiring ecoenzymatic 
activities (LAP and NAG; green), and their respective influence on soil 
nitrogen availability (NH4 +-N and NO3 −-N; blue) over the summer monsoon. 
Exogenous variables are enclosed in rectangular boxes and endogenous 
variables are enclosed in boxes with rounded corners. Line width and arrow 
size are proportional to the strength of each relationship, with single-headed 
arrows indicating directional effects and double-headed arrows linking 
covariates. Positive relationships are indicated by black lines, with negative 
relationships in red. Path coefficients, the sign of their effect (positive 
or negative), and significance level are noted along each path, where 
***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05. R 2 values denote the proportion 
of variance explained by the model for NH4 +-N and NO3 −-N. Additional 
variances explained by the model included SVWC (R 2 = 0.35), STemp 
(R 2 = 0.41), SOM (R 2 = 0.04), LAP (R 2 = 0.08), and NAG (R 2 = 0.24). 
Summary metrics indicate the model is well-fitted to the data: χ 2(22, 
n = 234) = 29.66, p ≥ 0.05; RMSEA = 0.04 with CI90: (0.00, 0.07), p ≥ 0.05; 
CFI = 0.99; SRMR = 0.04.
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4.  Discussion
We used a rainfall manipulation experiment to determine the pulse response and duration of plant available nitro-
gen following monsoon rain events that varied in size and frequency throughout a summer monsoon in a north-
ern Chihuahuan Desert grassland. We also examined the evolution of plant available nitrogen over the growing 
season and attempted to identify some potential drivers that may be influencing seasonal nitrogen availability in 
this dryland ecosystem. Consistent with the pulse dynamics framework, we found large infrequent rain events 
always resulted in significant pulses of increased soil moisture availability that persisted for several days. Yet, 
contrary to our expectations, plant available nitrogen rarely pulsed in response to monsoon rainfall, regardless of 
event size or frequency, and declined significantly following large infrequent rain events. However, small frequent 
rain events were found to stimulate some microbial activities, which resulted in an overall increase of plant avail-
able nitrogen by the end of the summer monsoon.

In the pulse dynamics framework, rainfall stimulates pulses of increased biological activity and resource avail-
ability in dryland ecosystems (Noy-Meir, 1973). The Threshold-Delay Nutrient Dynamics model extends the 
pulse dynamics framework with the idea that larger rain events should result in greater soil moisture availabil-
ity, thereby stimulating primary production in addition to soil microbial activities that regulate biogeochemical 
cycling (Collins et  al.,  2008). However, we found little to no evidence that either plant available nitrogen or 
nitrogen-acquiring microbial ecoenzymatic activities pulsed in response to our experimental rainfall treatments. 
Furthermore, whereas small frequent rain events stimulated some microbial activities that generally resulted in 
the greatest amounts of plant available nitrogen, large infrequent rain events significantly reduced nitrogen availa-
bility over the summer monsoon. Yet in other somewhat less water-limited ecosystems, short-lived pulses of plant 
available nitrogen have been observed within hours (Leitner et al., 2017) to 1–2 days (Cui & Caldwell, 1997; 
Dijkstra et al., 2012) following large rain events. Thus, the possibility exists we failed to capture short-duration 
pulsing events that may have occurred within hours of rainfall addition in our system—nitrogen that would have 
been rapidly immobilized by soil microbes or otherwise lost prior to the next sampling period.

Microbial activities tend to increase rapidly in response to the wetting of dry soils (Birch,  1958; Borken & 
Matzner, 2009). Indeed, we found NAG activity to be stimulated by increased soil moisture availability, particu-
larly following small frequent rainfall treatments, which resulted in greater amounts of plant available nitrogen 
over the growing season. However, we did not find soil moisture availability to be a driver of LAP activity, which 
not only declined following rainfall treatments, but also reduced the availability of NH4 +-N when activity levels 
were high. Others too have found inconsistencies in microbial ecoenzymatic activity responses under greater 
soil moisture availability (J. P. Schimel,  2018). While nitrogen-acquiring ecoenzymatic activities were found 
to increase significantly in response to large frequent rain events over the growing season in a semi-arid Inner 
Mongolian steppe (Zhou et al., 2013), some meta-analyses have found increased precipitation only marginally 
stimulates nitrogen-acquiring ecoenzymatic activities across ecosystems globally (Sinsabaugh et al., 2008; Xiao 
et al., 2018). Fundamentally, a complicated relationship exists between nitrogen-acquiring microbial ecoenzy-
matic activities and nitrogen availability due to complexities in how microbial organisms respond to environmen-
tal changes (Burns et al., 2013; Sinsabaugh & Follstad Shah, 2012; Sinsabaugh et al., 2008). The methodology 
itself also presents an important limitation to interpretation in that laboratory assays measure “potential” ecoen-
zymatic activities using synthetic substrates in optimal conditions that include sufficient moisture (German 
et  al.,  2011; Wallenstein & Weintraub,  2008). Since results from laboratory assays are indicative of overall 
enzyme concentrations and not actual rates of in situ activities, they may not accurately reflect what happens 
under field conditions (Henry, 2012).

Low atmospheric deposition rates (Báez et al., 2007) combined with the low abundance of nitrogen fixers in 
biological soil crusts (Fernandes et al., 2018, 2022) suggest decomposition of SOM is the primary source of inor-
ganic nitrogen in the northern Chihuahuan Desert. However, we did not find SOM to be a driver of either plant 
available nitrogen or nitrogen-acquiring microbial ecoenzymatic activities, nor did we find significant changes 
in SOM content over the growing season. Microbial biomass and ecoenzymatic profiles in dryland soils suggest 
strong processing of recalcitrant carbon compounds, making accumulation of SOM unlikely overall (Sinsabaugh 
et al., 2008; Waring et al., 2021). A recent meta-analysis focused on SOM in dryland ecosystems suggested that 
greater soil moisture availability preserves SOM from microbial attack (Plaza et al., 2018). Yet we found large 
rain events reduced SOM—a result consistent with long-term SOM dynamics in the northern Chihuahuan Desert 
(Hou et al., 2020).
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Aside from microbial immobilization and plant uptake, nitrogen loss pathways common in desert soils include 
gaseous emissions, vertical leaching, and surface runoff. Losses to surface runoff are generally negligible in 
drylands like the Chihuahuan Desert (Peterjohn & Schlesinger, 1990; Turnbull et al., 2013), as overland flow 
typically only occurs on hillslopes and in response to extreme rain events (Borken & Matzner, 2009). Moreover, 
our use of soil collars to prevent soil microbes and plant roots from acquiring resources from their surrounding 
environment also precluded any potential losses of plant available nitrogen to surface runoff. We further mini-
mized plant uptake by clipping aboveground biomass within each soil collar prior to and throughout the summer 
monsoon. Several theoretical and empirical studies have indicated that large infrequent rain events stimulate 
aboveground net primary production (ANPP) in drylands (e.g., Heisler-White et  al.,  2008; Hou et  al.,  2021; 
Knapp et al., 2008). However, in our study site (i.e., MRME), we have found large infrequent and small frequent 
rain events result in comparable amounts of ANPP (Thomey et al., 2011), indicating that losses of soil inorganic 
nitrogen following large infrequent rain events are not a consequence of differences in aboveground production. 
Furthermore, given that nitrogen availability increased over the growing season, it is unlikely that plant available 
nitrogen was lost to either surface runoff or plant uptake in this study.

Gaseous emissions via nitrification, denitrification, and ammonia volatilization are thought to account for the 
majority of nitrogen losses in drylands (Peterjohn & Schlesinger, 1990). Indeed, many studies have observed 
increased gaseous emissions following the wetting of dry soils consistent with the Birch effect (e.g., Leitner 
et al., 2017; McCalley & Sparks, 2009; Yahdjian & Sala, 2010). Leaching into deep soil horizons, on the other 
hand, has historically been considered an inconsequential loss pathway for nitrogen in drylands because like 
surface runoff, it typically only occurs following extreme rain events (Borken & Matzner, 2009; Peterjohn & 
Schlesinger, 1990). Yet, NO3 −-N is particularly susceptible to leaching because of its high mobility in the soil 
(Reichmann et al., 2013; Robertson & Groffman, 2015; Song et al., 2020). Moreover, infrequent large rain events 
throughout the Holocene have resulted in substantial reservoirs of leached NO3 −-N that have accumulated below 
the rooting zone throughout the southwestern US and are estimated to account for 4%–20% of the total soil 
nitrogen pool in the Chihuahuan Desert (Walvoord et al., 2003). Therefore, it is probable that some NO3 −-N was 
leached beyond the rooting zone explored in this study following large infrequent rain events.

In general, losses of plant available nitrogen tend to increase and microbial ecoenzymatic activities tend to decline 
as soils become saturated (Austin et al., 2004; Borken & Matzner, 2009; Henry, 2012; J. P. Schimel, 2018). We 
found nitrogen availability declined significantly following large rain events. Furthermore, our SEM indicated 
large rain events were the strongest driver of reduced NO3 −-N availability in this system, supporting similar find-
ings in other dryland ecosystems (e.g., Cregger et al., 2014; Reichmann et al., 2013; Song et al., 2020; Yahdjian & 
Sala, 2010). We previously found soil respiration rates were greatest following large infrequent rain events in our 
study site (Thomey et al., 2011; Vargas et al., 2012), suggesting that rapid microbial consumption of available soil 
oxygen occurs under high soil moisture availability, potentially contributing to anoxic conditions. Several have 
established the relationship between soil moisture availability and soil microbial activities (Henry, 2012; Linn 
& Doran, 1984; Robertson & Groffman, 2015; Skopp et al., 1990). Microbial activities are minimal in dry soils, 
but as soil moisture increases, microbial activities also increase, and nitrification becomes the dominant transfor-
mation pathway. However, once water-filled pore space exceeds ∼60%, microbial processes become inhibited by 
the lack of aeration in the soil and denitrification becomes the dominant pathway. Thus, reductions of NO3 −-N 
following large rain events are likely also a consequence of denitrification as water-saturated soils reach an anoxic 
threshold in this northern Chihuahuan Desert grassland.

Meanwhile, high temperatures are known to stimulate biological transformations of nitrogen (Birch, 1958; Dai 
et al., 2020; Risch et al., 2019). Indeed, our SEM indicated that warmer soil temperatures stimulate NH4 +-N 
availability. Yet nitrogen availability was greatest towards the end of the summer monsoon when temperatures 
were cooler. This seemingly conflicting result is plausible because warmer temperatures tend to stimulate greater 
losses of nitrogen through gaseous emissions (Austin et al., 2004; McCalley & Sparks, 2009)—an effect that 
becomes more pronounced as soil moisture availability increases (Dai et al., 2020). Thus, it is likely early season 
reductions in nitrogen availability were a result of gaseous emissions when temperatures were highest.

Dryland ecosystems, which currently occupy 45% of the terrestrial land surface and account for 40% of global 
net primary production, are undergoing rapid expansion as a consequence of anthropogenic climate and land use 
changes (Burrell et al., 2020; Huang et al., 2017; Prăvălie et al., 2019). Meanwhile, climate models consistently 
predict greater intensification of the hydrological cycle, which could amplify asynchrony between microbial and 
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plant processes in these ecosystems. Our study provides further evidence that rainfall size and frequency simul-
taneously govern when plant and microbial processes are coupled by resource availability in drylands (Collins 
et al., 2008; Nielsen & Ball, 2015; Schwinning & Sala, 2004; Song et al., 2020). Overall, we found the greatest 
amounts of plant available nitrogen following small frequent rain events, which despite stimulating microbial 
processes, may not necessarily be sufficient to elicit plant responses. Consequently, a shift from the historical 
rainfall regime of frequent small events to fewer, larger events could substantially reduce the availability of soil 
inorganic nitrogen in northern Chihuahuan Desert grasslands, potentially lowering net primary production in 
these ecosystems.

5.  Conclusions
The pulse dynamics framework suggests pulses of increased soil moisture availability stimulate pulses of biologi-
cal activity and resource availability that control primary production in dryland ecosystems. However, field-based 
studies testing this framework in the context of altered precipitation regimes across temporal scales are rare. 
Evidence in support of the pulse dynamics framework has come primarily from leaf-level photosynthesis or 
soil respiration, often in response to a single rain event (e.g., Huxman et al., 2004; Pockman & Small, 2010; 
Sponseller,  2007; Thomey et  al.,  2014). In contrast, we found little evidence to support long-standing ideas 
regarding dryland ecosystem function in days following rain events or over the growing season. Nevertheless, our 
study provides further evidence that differences in the size and frequency of rain events can lead to the uncou-
pling of plant and microbial processes, which has important implications for net primary production in dryland 
ecosystems. Together, these results suggest that the pulse dynamics framework for drylands may operate on 
temporal scales that are either more rapid than the duration of a soil moisture pulse or apply to a narrower subset 
of moisture-driven processes (e.g., CO2 flux) than previously thought.

Data Availability Statement
All data presented in this study, including soil inorganic nitrogen, microbial ecoenzymatic activities, soil organic 
matter, soil volumetric water content, and soil temperature have been archived in the Environmental Data Initia-
tive Repository (EDI) under a Creative Commons Attribution 4.0 International (CC BY 4.0) license and can be 
found at https://doi.org/10.6073/pasta/eabc9fe8e7bcfce33f6960ef50253caf (Brown et al., 2022). Meteorological 
and PRS® data used in this study are also publicly available from EDI at https://doi.org/10.6073/pasta/1cb-
c37ae4d40b3844b5e4be9f6f18073 (Moore,  2021) and https://doi.org/10.6073/pasta/a17b125176a9c24dbb-
4caa760d2c9944 (Collins, 2020).
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