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E N V I R O N M E N TA L  S T U D I E S

Disturbance amplifies sensitivity of dryland 
productivity to precipitation variability
Tyson J. Terry1*, Osvaldo E. Sala2, Scott Ferrenberg3, Sasha C. Reed4, Brooke Osborne4,5,
Samuel Jordan2, Steven Lee6, Peter B. Adler1

Variability of the terrestrial global carbon sink is largely determined by the response of dryland productivity to 
annual precipitation. Despite extensive disturbance in drylands, how disturbance alters productivity-precipitation 
relationships remains poorly understood. Using remote-sensing to pair more than 5600 km of natural gas pipeline 
corridors with neighboring undisturbed areas in North American drylands, we found that disturbance reduced 
average annual production 6 to 29% and caused up to a fivefold increase in the sensitivity of net primary produc-
tivity (NPP) to interannual variation in precipitation. Disturbance impacts were larger and longer-lasting at loca-
tions with higher precipitation (>450 mm mean annual precipitation). Disturbance effects on NPP dynamics were 
mostly explained by shifts from woody to herbaceous vegetation. Severe disturbance will amplify effects of in-
creasing precipitation variability on NPP in drylands.

INTRODUCTION
Arid and semi-arid ecosystems (drylands) play a dominant role in 
the interannual variability and long-term trend of the terrestrial 
global carbon sink (1, 2). Interannual variability of net primary pro-
ductivity (NPP) in drylands is driven by a high sensitivity of NPP to 
variability in annual precipitation. In contrast, in ecosystems with 
higher precipitation, production is less limited by water availability 
than by mineral nutrients and light (3, 4). Plant community struc-
ture modifies NPP-precipitation dynamics through the influence of 
functional traits representing acquisitive versus conservative growth 
strategies (5–7). Physical disturbance is likely to modify the rela-
tionship between NPP and precipitation through direct and marked 
effects on plant functional composition and resource availability (8), 
but these potential interactions remain poorly understood. Closing 
this knowledge gap is critical, as most drylands are simultaneously 
experiencing widespread physical disturbance (9–11) and increas-
ing precipitation variability (12, 13).

Dryland systems have long been affected by grazing (14) and re-
source extraction (15) and are now increasingly exposed to novel 
disturbances such as accelerated wildfire regimes (16) and spatially 
extensive infrastructure tied to extractive and renewable energy (9, 
17). Disturbance modifies the plant community by either initiating 
secondary succession, typically replacing mature, long-lived vegeta-
tion with early successional species, or selecting for species with re-
silience to the specific disturbance pressure, as when heavy grazing 
leads to shrub dominance (14). In drylands, severe physical distur-
bance often replaces long-lived shrubs and trees with herbaceous 
species (18, 19) with shallower root systems, large seedbanks (annu-
als), or high meristem densities (perennials) that not only enable 
quick growth during years of high precipitation, but also increase 
susceptibility of aboveground productivity to drought (6). Despite 

our understanding of the life-history traits of early successional 
species (20), the impact of disturbance-mediated shifts in plant spe-
cies composition on precipitation-production relationships remains 
unknown.

Comparing postdisturbance productivity and its relationship 
with precipitation across regional climate gradients is difficult due 
to the idiosyncrasies of natural and anthropogenic disturbances that 
vary in type, intensity, size, and timing. Anthropogenic disturbances 
such as pipeline corridors provide an opportunity to study ecosys-
tem dynamics following a spatially consistent physical disturbance 
involving vegetation removal and disruption of the surface soil. 
Here, we use 34 years of remote sensing data across 5600+ km of 
natural gas pipeline corridors and adjacent undisturbed vegetation 
to study the effect of a uniform pulse disturbance on productivity 
across broad precipitation gradients in North American drylands. 
We asked (i) how does physical disturbance affect average NPP and 
the sensitivity of annual NPP to interannual variation in precipita-
tion? and (ii) are disturbance effects on NPP explained by shifts in 
the abundance of plant functional groups? We hypothesized that 
disturbance would decrease average NPP and increase the sensitiv-
ity of NPP to annual anomalies in precipitation due to shifts from 
long-lived woody plants to short-lived herbaceous species with ac-
celerated growth strategies. We predicted that effects of disturbance 
would be strongest in locations with low average precipitation, 
where replacement of shrubs with herbaceous cover may exacerbate 
water limitations on NPP. This prediction would validate previous 
results that indicate that vegetation structure modifies the sensitivity 
of aboveground primary production to interannual precipitation 
variability (5, 6).

We analyzed average annual NPP across gradients of mean an-
nual precipitation (MAP) traversed by multiple pipelines and the 
sensitivity of NPP to interannual variation in precipitation (3) for 
individual pixels within and adjacent to each pipeline corridor 
(3, 5, 6). We defined the temporal sensitivity of NPP to precipita-
tion at a given location as the slope of the linear relationship between 
NPP (g C m−2 year−1) and annual precipitation (mm year−1). Thus, 
an increase in the temporal sensitivity indicates a greater increase 
of annual production in a year of above-average precipitation or a 
greater decrease in a year of below-average precipitation. We did 
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not consider nonlinear relationships and leveraged linear interac-
tion terms to understand relationships. To address our first re-
search question, we used a linear model (disturbance-only model, 
Table 1) to quantify effects of disturbance on average production 
and temporal sensitivity of pixels within disturbed pipeline corri-
dors and in undisturbed, adjacent, comparison pixels. This model 
uses interactions between years since disturbance (YSD), MAP, and 
annual deviations from that mean (Pdev) to understand distur-
bance effects on average productivity and sensitivity (Table 1). This 
and subsequent models include a random effect of pipeline identity 
to account for differences in corridor width and construction im-
pacts between individual pipelines.

RESULTS AND DISCUSSION
We found that initial effects of pipeline disturbance decreased aver-
age NPP by 6 to 29% (term  =  MAP*YSD, t  =  −5.47, P  <  0.001; 
Fig.  1A) and increased the temporal sensitivity of NPP to annual 
precipitation up to fivefold (term = Pdev*YSD, t = 4.18, P < 0.001; 
Fig. 2). Reductions in average NPP and increases in sensitivity were 
both larger and longer-lasting at high precipitation locations (MAP 
>450 mm) where average production was predicted to be 4 to 7% 
lower and twice as sensitive to annual precipitation than undis-
turbed controls even after 55 to 65 years of recovery following pipe-
line construction (Figs. 1B and 2). Impacts were smaller in locations 
with MAP <300 mm, where average productivity and temporal sen-
sitivity were largely unaffected (Figs. 1 and 2).

In the absence of disturbance, the sensitivity of NPP to interan-
nual variation in precipitation was slightly greater in water-limited 
environments and decreased with increases in MAP (Fig. 2, black 
line). This pattern, though weak in our data, is consistent with previ-
ous work (4) and may reflect increasing limitation of productivity by 

nonwater resources (e.g., temperature, light, carbon, and nutrients) 
in ecosystems with higher MAP (1). Disturbance reversed this ex-
pected pattern: in the years following pipeline construction, the sen-
sitivity of NPP to annual precipitation was highest in locations with 
high MAP (Fig. 2, red line). Disturbance can change resource avail-
ability and use by releasing nutrients stored in biomass and altering 
the pool of plant functional traits that determine resource uptake 
and precipitation-use efficiency (4, 12). We hypothesize that impacts 
of disturbance on sensitivity were disproportionately large in loca-
tions where nonwater resources (e.g., carbon and nutrients) limit 
undisturbed production and, following a disturbance, a pulse of 
previously limited mineral resources then makes water a more pri-
mary limiting factor. The pulse of nutrients, such as phosphorus or 
nitrogen, may come from a release of resources (8) formerly stored 
in slow turnover mineral-associated organic matter that was en-
hanced due to changes in the soil climate (21). A meta-analysis 
showing that responses to N fertilization increase with MAP sup-
ports this hypothesis (22). While a change in resource limitation is 
one mechanism that could explain the disproportionately large ef-
fects of disturbance at higher MAP, we could not test this hypothe-
sis, and we highlight the need for future studies to investigate how 
nonwater resource limitation shifts following disturbance.

To address our second research question, about the role of spe-
cies composition in mediating disturbance impacts, we compared 
three linear regression models. The first model (disturbance model, 
Table  1) used only YSD and precipitation covariates (MAP and 
Pdev) to capture changes in production and its sensitivity. The sec-
ond model (composition model, Table 1) included no explicit dis-
turbance covariates, and instead relied on interactions between 
precipitation and woody (Woody) and herbaceous plant cover 
(Herb). The third model (disturbance + composition model) in-
cluded both plant composition, YSD, and precipitation covariates 

Table 1. Model selection table with values indicating overall model fit and fixed-effect covariates of linear models used. The disturbance model includes 
covariates of years since disturbance (YSD) and precipitation data of mean annual precipitation (MAP) and annual deviations from MAP (Pdev). The composition 
model includes covariates of woody (Woody) and herbaceous (Herb) plant cover and precipitation data. The composition + disturbance model includes woody 
and herbaceous plant cover, precipitation data, and YSD.

Model df R2 R2 without random 
effects

Delta AICc Weight Covariates

Composition + 
Disturbance

13 0.624 0.619 10.6 0.005 MAP, Pdev, MAP*
Pdev, MAP*Woody, MAP*

Herb, Pdev*Woody, 

Pdev*Herb,

MAP*Woody*1/√YSD,

MAP*Herb*1/√YSD,

Pdev*Woody*1/√YSD,

Pdev*Herb*1/√YSD

Composition 9 0.623 0.621 0 0.995 MAP, Pdev, MAP*Pdev,

MAP*Woody, MAP*Herb,

Pdev*Woody, Pdev*Herb

Disturbance 8 0.604 0.477 13,037 0 MAP, Pdev, MAP*Pdev

MAP*1/√YSD, 

Pdev*1/√YSD

MAP*Pdev*1/√YSD
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(Table 1), with interactions that allow average production and tem-
poral sensitivity of different functional groups to change with time 
since disturbance.

The model based solely on changes in plant functional composi-
tion, ignoring disturbance history, explained more variation in an-
nual NPP than a model informed only by time since disturbance 
(R2 = 0.62 versus 0.60), and explained as much variation in the data 
but with a lower Akaike information criterion (AIC) compared to 
the model that was informed by both time since disturbance and 
composition (R2 = 0.62) (Table 1). The fact that the model allowing 
the production sensitivities of each functional group to change with 
disturbance did not improve model fit indicates that changes in 
woody and herbaceous plant cover were responsible for most distur-
bance effects on production. Moreover, the proportion of variance 
explained by the random effects of individual pipeline identities di-
minished to near zero when models included plant functional cover 

(Table  1), suggesting that differences between individual pipeline 
disturbances and their subsequent impacts on production can be 
mostly explained by their respective effects on plant functional 
group composition. To visually compare impacts of altered plant 
functional composition, we applied the two models with composi-
tion covariates to a subset of disturbed and undisturbed pixels for 
which we have cover data from 0 to 10 years following disturbance 
and found that the pattern of increasing disturbance effects with 
MAP could be largely attributed to shifts in plant functional type 
cover (Fig. 3). Locations with the greatest decrease in average pro-
ductivity and largest increase in temporal sensitivity were also in 
locations that lost the most woody plant cover while maintaining or 
potentially gaining herbaceous plant cover following severe distur-
bance (Fig. 4).

The model that allowed the productivity of functional groups to 
vary with time since disturbance showed increases in both average 

Fig. 1. Effects of disturbance on average net primary production (NPP, g C m2 
year−1) across a spatial gradient of mean annual precipitation (MAP, mm 
year−1). Effects of disturbance are shown 0 to 5 years (A) and 55 to 65 years (B) since 
disturbance (YSD). Colored points show raw values of mean NPP for subsets of the 
data based on time since disturbance, while lines represent predictions from a 
model fit to the full dataset (conditional R2 = 0.60) assuming annual precipitation 
matches MAP. Black points represent mean values from observations of adjacent 
undisturbed vegetation during the same time frame.

Fig. 2. Effects of disturbance on the temporal sensitivity of NPP to interannual 
variation in precipitation increase across a gradient of MAP (mm year−1). Lines 
show the predicted temporal sensitivity (change in annual production per change 
in annual precipitation) at different years since severe disturbance (YSD). Line pre-
dictions come from a linear model trained with the full dataset (conditional 
R2 = 0.60). Colored margins represent 95% confidence intervals for model predic-
tions.

Fig. 3. NPP values at disturbed sites and their undisturbed controls 0 to 10 years after disturbance across a gradient of MAP. (A) shows predicted average NPP for 
each pixel and (B) shows predicted temporal variance (coefficient of variation) of NPP. Black points and lines represent observations and model predictions, respectively, 
for undisturbed control pixels. Red points and lines represent observations and model predictions for disturbed pixels. The red solid line represents model predictions for 
the composition-only model, in which disturbance can only affect production by changing composition. The red dashed line represents model predictions for the com-
position + disturbance model, in which disturbance can affect both composition and the average productivity and sensitivity of functional plant groups. Polygons sur-
rounding lines represent 95% confidence intervals for model predictions.
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productivity (term = Herb*MAP*YSD, t = 9.087, P < 0.001) and 
temporal sensitivity (term = Herb*Pdev*YSD, t = 2.421, P = 0.015) 
of herbaceous cover after disturbance, and decreases in both average 
productivity (term  =  Woody*MAP*YSD, t  =  −7.431, P  <  0.001) 
and temporal sensitivity (term  =  Woody*Pdev*YSD, t  =  −2.833, 
P = 0.005) of woody cover after disturbance. We speculate that these 
changes are due to two potential processes: First, postdisturbance 
increases in soil water (23) and nutrients (24) may provide competi-
tive release for herbaceous species that are often outcompeted by 
woody species under conditions of low resource availability (25). 
Second, species turnover following disturbance may be greater 
within the herbaceous functional group, where shifts from peren-
nial herbaceous species to invasive annual herbaceous species fol-
lowing disturbance are common in drylands (19, 26).

We found that changes in plant composition specifically shifts 
from woody to herbaceous vegetation and increased temporal vari-
ability of NPP across a gradient of mean precipitation more than 
shifts in mean precipitation gradient alone (Fig. 3B). This may indi-
cate that while patterns of precipitation variability and plant compo-
sition that co-occur across a mean precipitation gradient both 
influence production variability (6, 27, 28), plant composition may 
be the primary determinant of production variability.

The larger impacts of disturbance in locations with higher MAP 
that we documented may also be linked to regional patterns of deg-
radation. Dry locations with poor soil development have historically 
been unfit for agricultural use and thus have been subjected to in-
tense historical grazing pressure (14). Our approach uses current 
vegetation outside of disturbed pipeline corridors as “undisturbed” 
data and does not account for deviations between current and po-
tential vegetation, or how those deviations may correlate with re-
gional precipitation gradients. Our approach could underestimate 
impacts of disturbance in dry locations if they are in fact more de-
graded from historical land use.

Our results indicate that disturbance will likely amplify impacts 
of precipitation variability on production and carbon cycling within 
dryland systems. Our data show 10 to 100% increases in interan-
nual variability of annual NPP in locations that receive more than 
400-mm annual precipitation (Fig. 3B). This is particularly concern-
ing given the current patterns of increasing precipitation variability 
in drylands worldwide (12, 29, 30). Greater frequency or extent of 
disturbances would further increase the large influence drylands 

have on the interannual variability of the global carbon cycle (1, 2). 
Higher interannual variability in production may also cause reduction 
of habitat and microclimate refugia provided by stable plant com-
munities during years of dry conditions.

MATERIALS AND METHODS
Pipelines
Our analysis utilized four natural gas pipeline corridors within the 
western United States: Kern River Pipeline (2702 km, built in 1992), 
Ruby Pipeline (1090 km, built in 2011), El Paso Natural Gas Pipeline 
(1040 km, built in 1946), and Northwestern Pipeline (860 km, built 
in 1960) (fig. S1). We selected these pipelines based on width (~30 m), 
to allow use of fine-scale remote sensing products within the dis-
turbed pipeline corridors, and length (>160 km), to capture distur-
bance effects along precipitation gradients within and across unique 
dryland systems. We used a high-resolution satellite basemap (<1 m 
resolution) in Google Earth Engine (31) and pipeline maps from the 
National Pipeline Mapping System (32) to visually draw a reference 
line in the center of each pipeline corridor and create a parallel refer-
ence line of undisturbed vegetation of similar topography and land 
use adjacent to the pipeline corridor (within 60 to 150 m). Only 
pipeline pixels whose centroid fell within 3 m of the pipeline refer-
ence line and their respective closest undisturbed neighbor pixel 
along the undisturbed reference line were included in the dataset 
(fig. S2). We also excluded urban and agricultural locations from the 
dataset. NPP pixels within the pipeline corridor and the undisturbed 
reference line (30 m) were respectively averaged to the coarser spa-
tial scale of precipitation pixels (1000 m) to study precipitation ef-
fects on NPP (fig.  S2). Our analysis consists mostly of pixels that 
have been classified as drylands, meaning that the ratio of precipita-
tion to potential evaporation in these locations is less than 0.7. Our 
analysis does include a small portion of pixels that exceed this value 
(fig. S1), but they were retained in the dataset as they belong to small 
breaks from “drylands” that occur in shallow mountain ranges that 
are surrounded by drylands and also to extend the observed precipi-
tation gradient to the edge of dryland pixels.

Pipeline construction involves the removal of all vegetation 
within the corridor via heavy equipment and results in churning of 
the surface soil. After topsoil is pushed aside and subsequently re-
distributed following pipeline installation, pipeline corridors are 

Fig. 4. Plant functional type cover in disturbed pixels (red) and their respective undisturbed controls (black). Disturbed points represent annual cover values for 
the first 10 years following disturbance; undisturbed points represent the annual cover values of undisturbed controls for the same sites and years as the disturbed data. 
Smoothed lines are representing general patterns of the data (with shaded margins indicating 95% confidence intervals of smooth prediction lines) for disturbed (red) 
and undisturbed (black) cover values. For display purposes only, values of herbaceous cover >70% are not shown. The R2 values for the left and right plots are 0.26 and 
0.13, respectively.
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drill seeded with a restoration seed mix that is region-specific and 
typically chosen by a federal agency within each geographic district. 
Seed mixes include native shrub, forb, and perennial grass species 
with composition varying according to undisturbed vegetation 
type (e.g., desert scrub, sagebrush scrub, piñon juniper woodland, 
and desert grassland). To our knowledge, there have been no large-
scale secondary disturbances or ecological treatments on the four 
pipelines included in this study following the initial pipeline con-
struction. Although pipeline construction is not a close analog of 
common natural disturbances, it provides a near-uniform physical 
disturbance across space, allowing us to ask questions regarding ef-
fects of disturbance across abiotic gradients. Moreover, pipeline 
construction is similar to other prevalent anthropogenic physical 
disturbances on plants and soils, such as energy infrastructure and 
frequent vehicle traffic, which occur in all of the ecosystems includ-
ed in our study (9, 11). Using pipeline construction as a natural 
experiment allowed us to compare impacts of a replicated distur-
bance on precipitation-production relationships across the region, 
a comparison that would not be possible due to variation in the 
type, frequency, and severity of natural disturbances at these scales.

Data
We used 34 years (1986 of 2019) of remotely sensed estimates of 
annual NPP (33) to identify spatial and temporal trends of produc-
tion following pipeline construction. This NPP dataset uses a mod-
ified version of the MOD17 algorithm to improve accuracy and 
allow use with Landsat imagery at a 30-m spatial resolution (33). 
The approach uses reflectance values of photosynthetic active 
wavelengths as well as meteorological inputs (short wave radiation, 
daily minimum and maximum temperature, and vapor pressure 
deficit) to calculate light use efficiency and scale rates of respira-
tion. Calculations account for inter-annual shifts of plant composi-
tion within pixels (33) by shifting maintenance respiration with 
changes in vegetation (33), allowing production-reflectance rela-
tionships to shift with novel plant composition following distur-
bance. Estimates of undisturbed production and its sensitivity to 
annual precipitation based on this dataset are similar to those based 
on less-processed proxies for productivity, such as normalized dif-
ference vegetation index and enhanced vegetation index (4).

We also used a fractional plant cover dataset (34), generated 
from a convoluted neural network model that uses reflectance val-
ues to provide annual cover estimates for tree, shrub, perennial her-
baceous, and annual herbaceous plant functional groups at a 30-m 
spatial resolution. We simplified these groups into woody (shrub + 
tree) and herbaceous cover (annual + perennial) to facilitate inter-
pretation and reduce the number of parameters in our models.

We obtained precipitation data from the gridded climate product 
Daymet (35), with MAP calculated as average total precipitation for 
each water year (October 1 to September 30) during the years of 
analysis (1986 to 2019), and annual deviations in precipitation cal-
culated as the difference between total precipitation of each water 
year and the MAP for that pixel.

We excluded barren locations with average or interannual produc-
tion values of <10 g*C*year/m2 due to low confidence in our dataset 
to detect meaningful interannual variation in NPP in locations with 
very sparse vegetation and a lot of bare ground. We also excluded pixels 
from both NPP and fractional cover datasets with high levels of tem-
poral or spatial smoothing by only using pixels with 80% cloud-free 
imagery during the growing season. We excluded data from the initial 

year of the pipeline construction due to complications that arise from 
variable pipeline construction timing and its subsequent influence on 
annual NPP.

Modeling disturbance effects on average production 
and sensitivity
To answer our first research question, we used a mixed effect linear 
model implemented in the R package lme4 (36, 37) to analyze dis-
turbance effects on NPP across a gradient of mean precipitation and 
temporal sensitivity of NPP to interannual variation in precipitation 
(Eq. 2). This disturbance model included main effects of MAP, an-
nual deviations in precipitation (Pdev) around the MAP at each lo-
cation, and their interaction. This interaction (β3) term allowed 
sensitivity to change across space. We incorporated disturbance as a 
covariate (YSD) to allow disturbance to affect NPP relationships 
with MAP, Pdev, and their interaction. The YSD metric was calcu-
lated as 1 divided by the square root of years since initial disturbance 
and was chosen to allow for large initial impacts of disturbance that 
dissipate toward zero over time (Eq. 1). All undisturbed data points 
were given a disturbance covariate of 0 to cancel disturbance effect 
coefficients (Eq.  1), allowing us to fit both undisturbed and dis-
turbed data within the same model. Subscripts indicate parameters 
that vary across years (t) and space (x). We also incorporated a ran-
dom term for pipeline identity (σx) interacting with our YSD metric 
to account for differences among pipelines in corridor width, initial 
construction, and restoration efforts. Significant (P < 0.05) interac-
tion terms involving disturbance indicate that disturbance is chang-
ing average production (β4,6) and/or sensitivity (β5,6). Interpretation 
of coefficients is provided in table S1.

(Disturbance model)

Model comparison
To answer our second research question, we compared the fit of two 
additional linear models with our disturbance model to quantify 
how changes in functional composition drive postdisturbance pro-
duction dynamics. We did this by creating a composition model 
(Eq. 3) that predicts NPP across space and time using solely func-
tional type cover and precipitation covariates, ignoring information 
about disturbance history, and compared the fit against another 
model, our composition + disturbance model (Eq. 4), that added 
interaction terms to allow disturbance to change average productiv-
ity and sensitivity of each plant functional type. Both Eqs. 3 and 4 
also contain a random effect of pipeline identity (σ). We then com-
pared all models using the corrected Akaike information criterion 
(AICc) and coefficient of determination R2 to quantify the portion 
of disturbance effects caused by changes in functional composition 
and effects of disturbance on average productivity and sensitivity of 
functional groups.

YSDt =

⎧
⎪⎨⎪⎩

1√
YSDt

, YSD>0

0, if undisturbed

(1)

Ln(NPPx,t)=α+β1MAPx+β2 ∗Pdevt +β3 ∗MAPx ∗Pdevt +

β4 ∗MAPx ∗YSDt +β5 ∗Pdevt
∗
YSDt +β6 ∗MAPx ∗Pdevt ∗YSDt+

σp ∗YSDt +εx

(2)
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Our composition model (Eq. 3) excluded disturbance effects be-
yond changes in functional composition and models the main effects 
of MAP, Pdev, and their interaction with woody (Woody) and herba-
ceous (Herb) plant cover (Eq.  3). Our composition + disturbance 
model (Eq. 4) was identical to the prior model (Eq. 3) but included 
additional interaction terms (β7 − 10) that allowed a disturbance met-
ric (Eq.  1) to influence relationships between NPP and MAP and 
Pdev for each (woody or herbaceous) functional group. Within the 
composition + disturbance model, significant (P < 0.05) interaction 
terms including disturbance indicate that disturbance is changing 
average productivity (β7,8) and/or sensitivity (β9,10) of a function-
al group.

(Composition model)

(Composition + disturbance model)

Model checks
We assessed diagnostic plots of each model (figs. S3 to S5) to ensure 
that assumptions of normality and heteroscedasticity were met. To 
ensure that spatial autocorrelation was not driving patterns in our 
model, we constructed a semivariogram to determine the threshold 
distance between points at which model residuals were no longer 
spatially correlated (range) and then created a distance matrix between 
all the sites to determine the proportion of the data under the range 
value that was spatially autocorrelated (fig. S6). We found that only 6% 
of our residuals were spatially autocorrelated for the disturbance-only 
model, which had the poorest fit to the data of the three models 
(fig. S7). We also completed this process for both the composition-only 
and composition + disturbance models, both of which had lower val-
ues of autocorrelation of residuals than the disturbance-only model 
(fig. S7). To ensure there was no collinearity within our model param-
eters, we analyzed the variable inflation factor following model fit and 
found that all variables had variance inflation factors of less than 3.

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Table S1
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